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Abstract 
Lung cancer remains a leading cause of cancer-related mortality 

worldwide, necessitating advanced research to unravel its molecular 

underpinnings. This study investigates the cell-type origins of differentially 

expressed genes (DEGs) associated with lung cancer by employing a 

comprehensive computational approach to analyze data from the Human 

Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA). Our findings 

enhance the understanding of the genetic underpinnings of lung cancer, 

highlighting the necessity of integrating multiple genomic datasets to 

effectively characterize gene expression variations and their clinical 

implications. A significant focus of this research is on how smoking status 

(current, former, never smoker) influences cell-type-specific gene 

expressions within lung cancer patients, providing a nuanced 

understanding of how environmental factors shape genetic outcomes. By 

utilizing linear regression and other statistical methods, we identify 

distinct DEGs that vary according to smoking history, offering insights into 

the molecular impact of smoking on gene expression and pinpointing 

potential pathways for targeted interventions. Additionally, the study 

addresses the limitations of current methodologies and demonstrates the 

advantages of employing a diverse array of analytical approaches. Future 

directions will expand these investigations to include a broader range of 

environmental and genetic factors affecting lung cancer, aiming to refine 

our understanding of gene-environment interactions in this complex 

disease. This expansion has the potential to pave the way for more 

personalized therapeutic strategies, ultimately improving patient care. 
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Sammendrag 
Lungekreft er fortsatt en ledende årsak til kreftrelatert dødelighet globalt, 

noe som krever avansert forskning for å avdekke de molekylære 

grunnlagene. Denne studien undersøker celletype-opprinnelsen til 

differensielt uttrykte gener (DEG) assosiert med lungekreft ved å bruke en 

beregningsmetode for å analysere data fra Human Protein Atlas (HPA) og 

The Cancer Genome Atlas (TCGA). Våre funn forbedrer forståelsen av de 

genetiske grunnlagene for lungekreft og understreker nødvendigheten av 

å integrere flere genomiske datasett for å effektivt karakterisere 

genuttrykk og deres kliniske implikasjoner. Et fokus i denne forskningen 

er hvordan røykerstatus (nåværende, tidligere, aldri røyker) påvirker 

celle-type-spesifikke genuttrykk hos lungekreftpasienter, og gir en 

nyansert forståelse av hvordan miljøfaktorer former genetiske utfall. Ved 

å bruke lineær regresjon og andre statistiske metoder identifiserer vi 

distinkte differensielt uttrykte gener (DEG) som varierer etter 

røykehistorikk, og tilbyr innsikt i røykingens molekylære innvirkning på 

genuttrykk samt fremhever potensielle veier for målrettede 

intervensjoner. Studien tar også for seg begrensningene ved nåværende 

metoder og demonstrerer fordelene ved å bruke et bredt spekter av 

analytiske tilnærminger. Fremtidige retninger vil utvide disse 

undersøkelsene til å inkludere et bredere spekter av miljømessige og 

genetiske faktorer som påvirker lungekreft, med mål om å forbedre vår 

forståelse av gen-miljø-interaksjoner i denne komplekse sykdommen. 

Denne utvidelsen har potensial til å bane vei for mer persontilpassede 

terapeutiske strategier og i siste omgang forbedre pasientomsorgen. 

 

Nøkkelord 
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In this thesis, we delve into the intricate realm of bioinformatics, focusing 

on unraveling the cell-type origins of differentially expressed genes. Gene 

expression is the biological process where genetic instructions are used to 

synthesize gene products. These products are usually proteins, which go 

on to perform essential functions in the body (Nelson & Cox, 2021). The 

process begins with the DNA in the cell nucleus, where each gene serves 

as a code, or set of instructions, for the synthesis of a particular protein. 

The first step in this process is transcription, where a segment of DNA is 

copied into RNA (specifically messenger RNA or mRNA) by the enzyme 

RNA polymerase (Nelson & Cox, 2021).  

This mRNA strand carries the genetic information from the DNA out of the 

nucleus into the cytoplasm. Here, in a process known as translation, the 

mRNA serves as a template to guide the synthesis of the protein it 

encodes (Nelson & Cox, 2021). Ribosomes read the sequence of the 

mRNA bases, and, using this sequence, they assemble amino acids in the 

correct order to produce the protein (Nelson & Cox, 2021). This flow of 

information from DNA to RNA to protein is a cornerstone of cellular 

function and the central dogma of molecular biology (Nelson & Cox, 

2021). 

The field of bioinformatics has witnessed significant advancements in gene 

expression analysis technologies, particularly since the early 2000s 

(Gasperskaja & Kučinskas, 2017). These technologies have been crucial in 

probing biological processes and identifying potential disease mechanisms. 

Clinicians often collect tissue samples from patients and healthy controls 

to analyze genes with differing expressions in diseased versus control 

samples. Such studies have led to the discovery of biomarker signatures 
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for diseases like breast cancer, necessitating differentiated treatments 

(Smith et al., 2008). While these analyses provide insights into potential 

causative factors, they can be misleading if sample differences are 

attributed to variations in cell type composition. 

Since the completion of the human genome sequence in 2003, the 

annotation of the genome and advancements in sequencing technologies, 

such as Sanger and Next-Generation Sequencing (NGS), have enabled the 

identification of variations in human coding and non-coding sequences 

(Gasperskaja & Kučinskas, 2017). In bioinformatics, the development of 

RNA Sequencing (RNA-seq) and Single Cell Analysis (SCA) has 

revolutionized our understanding of the cell-type origins of differentially 

expressed genes (Wang et al., 2009). These methods are essential for 

dissecting gene expression patterns in tissues with heterogeneous cell 

compositions (Durmaz et al., 2015). 

RNA Sequencing allows for the comprehensive analysis of RNA presence 

and quantity in biological samples. SCA further advances this 

understanding by enabling the analysis of gene expression at the 

individual cell level, which is crucial in tissues comprising diverse cell 

types (Durmaz et al., 2015; Hodzic, 2016). Isolating single cells and 

analyzing their genetic material allows researchers to pinpoint specific cell 

types responsible for particular gene expression changes. 

Microarrays, an older yet vital method, involves hybridizing labeled RNA to 

gene probes on a chip (Nature, n.d.). Despite being less precise than RNA 

Sequencing, they remain integral due to their cost-effectiveness and 

extensive historical data. 

The advancements in these technologies have significantly enhanced our 

ability to interpret complex genomic data, highlighting the intricate 

relationship between gene expression and cell-type specificity. They 

represent pivotal steps in the ongoing journey of genetic research, from 

the early days of Mendelian genetics to the detailed, cell-specific analyses 

of today. 
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Our journey begins with an exploration of cancer as a disease, focusing on 

the cell cycle as a fundamental cellular process frequently targeted by 

cancer. We will provide a detailed examination of how the cell cycle 

operates under normal conditions and how its regulation is disrupted in 

cancerous cells. 

Following this foundational understanding, we shift our focus specifically 

towards lung cancer, discussing its epidemiology, types, and genetic 

underpinnings. We delve into the databases used in our research, such as 

The Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA). 

These resources are pivotal for our analysis, providing comprehensive 

datasets on gene expression and protein localization. 

We then introduce the statistical frameworks and methodologies utilized 

to extract cell type information from differentially expressed genes. This 

includes an explanation of marker genes and their role in identifying cell 

types, as well as the application of cell type ontologies to enhance our 

understanding of gene expression patterns. 

Next, we detail the methodologies employed in our study, covering data 

collection strategies from HPA and TCGA, and the software development 

processes involved. We describe the development and functionalities of 

the CellTypeGenomics Python package, emphasizing its capabilities in 

analyzing gene expression data and extracting biological insights from 

real-world databases. 

The thesis further explores the impact of smoking on lung cancer 

genomics, highlighting how smoking status influences gene expression 

and the molecular landscape of lung cancer. We discuss the effects of 

demographic factors such as age and gender on gene expression in lung 

cancer, providing a comprehensive analysis of how these variables 

interplay with genetic data. 

In the methodology chapter, we outline the data processing techniques, 

normalization steps, and statistical methods employed to ensure robust 
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and accurate analysis. This includes the use of over-representation 

analysis (ORA) and various statistical tools to identify significant biological 

processes and pathways associated with lung cancer. 

Finally, we present the results of our study, showcasing the findings of 

differential gene expression analysis and pathway enrichment. We provide 

visualizations and statistical summaries that elucidate the complex 

relationships between gene expression, cell types, and lung cancer. The 

discussion chapter interprets these results, drawing conclusions on the 

biological significance and potential implications for cancer research and 

therapy. 

 

1.1 The Challenge of Cellular Heterogeneity 

In this context, a fundamental challenge in bioinformatics is unraveling 

the cell-type origins of genes that are differentially expressed within 

diverse cell populations. Findings suggest that even cell populations that 

appear identical can demonstrate significant phenotypic diversity at a 

granular level. This inherent cellular diversity, pivotal in biological 

processes and cellular responses to stimuli, is highlighted in works such as 

Altschuler and Wu (2010). The critical question involves distinguishing 

between the functional relevance of this heterogeneity and the variability 

that may be stochastic biochemical noise. This discernment is essential for 

creating precise models that describe individual cell behaviors and 

understanding the biological implications of gene expression variations 

across different cell populations. 

 

1.2 CellTypeGenomics – A Python Package to Classify Cell Type 

Origin of Differentially Expressed Genes 

We have previously written a specialization project where we developed a 

Python package named CellTypeGenomics, focusing on extracting cell type 
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origins of differentially expressed genes from RNA Sequencing data by 

utilizing a Fisher Exact Test with Benjamini-Hochberg correction (Føleide & 

Mittet, 2023). This software facilitates the attribution of gene expression 

changes to specific cell types within heterogeneous samples, a task that is 

both crucial and challenging in cancer research. The specialization project 

employed data from a psoriasis study (Solvin et al., 2023) to validate the 

functionality of the CellTypeGenomics package, demonstrating its ability to 

identify cell-type-specific gene expressions.  

 

1.3 An Introduction to Cancer 

1.3.1 Understanding Cancer 

Cancer is a complex disease characterized by the uncontrolled growth and 

spread of cells. It can originate almost anywhere in the human body, 

which comprises trillions of cells (NCI, 2021). These cells typically grow, 

divide, and replace themselves in a regulated process. New cells are 

created to replace older or damaged ones, maintaining the body’s health. 

However, this orderly process can break down. When it does, cells can 

start to grow uncontrollably, potentially forming tumors, which can be 

either benign (non-cancerous) or malignant (cancerous) (NCI, 2021). 

Cancerous tumors are aggressive; they can invade nearby tissues and 

spread to other parts of the body, a process called metastasis, which is a 

hallmark of cancer’s ability to be life-threatening (NCI, 2021). In contrast, 

benign tumors do not invade other tissues and, once removed, usually do 

not grow back. Despite their non-cancerous nature, benign tumors can 

still pose serious health risks, depending on their size and location (NCI, 

2021). 

Cancer cells exhibit several key differences from normal cells. They can 

grow without the usual growth signals required by normal cells and can 

continue to divide indefinitely (NCI, 2021). Unlike normal cells, which 
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cease dividing or die when they encounter other cells (a process known as 

apoptosis), cancer cells ignore these signals (NCI, 2021). They also have 

the ability to invade other tissues, promote blood vessel growth 

(angiogenesis), and hide from or manipulate the immune system to 

support their growth (NCI, 2021). 

 

1.3.2 The Cell Cycle 

Figure 1.1 provides a detailed representation of the cell cycle, illustrating 

the orchestrated series of events that enable a cell to duplicate its 

contents and divide into two daughter cells. The cycle commences with 

the G1 phase, where cells experience growth by synthesizing proteins and 

increasing in size. At this juncture, cells also assess environmental 

conditions to decide whether to proceed with division or enter a quiescent 

state known as G0 (Hardin & Bertoni, 2018; Skogholt, 2021). 

The S phase marks the period where DNA replication occurs, with each 

chromosome duplicating to ensure that subsequent daughter cells inherit 

a complete genetic blueprint. The subsequent G2 phase is another period 

of growth and final preparations for mitosis, where the cell assembles the 

proteins and organelles necessary for chromosome segregation and cell 

division (Hardin & Bertoni, 2018). 

The culmination of the cycle is the M phase, comprising mitosis and 

cytokinesis. During mitosis, sister chromatids, which are the replicated 

chromosomes, align at the cell’s equator and are then pulled apart by the 

spindle fibers to opposite poles of the cell. Cytokinesis follows, physically 

dividing the cytoplasm and cell membrane to form two genetically 

identical daughter cells (Hardin & Bertoni, 2018). 
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Regulation of the cell cycle is a critical aspect of cellular division, ensuring 

that each phase progresses in an orderly and timely manner. This 

regulation is mediated by a variety of checkpoints and cyclin-dependent 

kinases (Cdks) (Hardin & Bertoni, 2018). Checkpoints, such as the G1-S 

and G2-M transitions, monitor the integrity of the DNA and the cell’s 

readiness to proceed, acting as gatekeepers that can initiate repair 

mechanisms or trigger apoptosis (programmed cell death) if irreparable 

damage is detected. Cdks, when bound to specific cyclin proteins, form 

complexes that drive the cell from one phase to the next, with their levels 

fluctuating to meet the cell’s needs at each stage (Hardin & Bertoni, 2018; 

Skogholt, 2021). 

Figure 1.1: The figure presents the cell cycle, delineating the four primary stages 
of cell division (Wikimedia Commons, 2016). During the mitotic phase, 
chromosomes condense and are sorted into two new nuclei, followed by cytoplasmic 
division in cytokinesis. The interphase encompasses DNA replication in S phase, 
with periods of growth in G1 and G2. The cyclical nature of these stages ensures 
that each daughter cell receives a complete set of genetic instructions. Regulatory 
checkpoints within this cycle are critical for preventing the aberrant cell division 
characteristic of cancerous growth (Skogholt, 2021). 
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1.3.3 The Cell Cycle and Cancer 

The precise regulation of the cell cycle is essential for maintaining the 

balance between cell proliferation and cell death, which is crucial for 

normal tissue homeostasis. Disruptions in the cell cycle's checkpoints and 

control mechanisms can lead to unrestricted cellular division, setting the 

stage for the potential development of cancer. Such dysregulation may 

result from genetic mutations that activate oncogenes or deactivate tumor 

suppressor genes, disrupting the tightly regulated process of cell growth 

and division (Skogholt, 2021). 

Building upon this concept, the "Hallmarks of Cancer," introduced by 

Hanahan and Weinberg in 2000, offer a comprehensive understanding of 

the various biological capabilities that cancer cells acquire throughout their 

development. These hallmarks encompass critical processes such as 

sustaining proliferative signaling (e.g., mutations in the RAS oncogene 

result in constant growth signals, driving uncontrolled cell division), 

evading growth suppressors (e.g., loss of function in the RB1 tumor 

suppressor gene removes important cell cycle control), resisting cell death 

(e.g., mutations in the TP53 gene allow cancer cells to survive and 

proliferate despite genetic errors), enabling replicative immortality (e.g., 

activation of telomerase maintains telomere length, allowing indefinite 

replication), inducing angiogenesis (e.g., overexpression of VEGF 

stimulates the growth of new blood vessels essential for tumor growth), 

and activating invasion and metastasis (e.g., changes in cell adhesion 

molecules and the extracellular matrix facilitate tissue invasion and spread 

to distant organs) (Hanahan & Weinberg, 2000; Hanahan & Weinberg, 

2011; Evan & Vousden, 2001; Weinberg, 2013). Understanding these 

hallmarks provides critical insights into the mechanisms of cancer 

development and progression, highlighting potential targets for 

therapeutic intervention aimed at disrupting these processes and 

effectively treating cancer. 
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The cell cycle is a fundamental process where cells grow and divide, a 

process tightly regulated by various checkpoints. However, in cancer, 

these regulatory mechanisms fail. Proteins such as cyclins and cyclin-

dependent kinases (CDKs), which are crucial in cell cycle progression, are 

often found mutated or dysregulated in cancer cells, leading to 

uncontrolled proliferation. The transition points like the G1-S transition, 

crucial for DNA repair and replication, and the G2-M transition, necessary 

for mitotic entry, are particularly vulnerable to such disruptions (Hartwell 

& Kastan, 1994; Kastan & Bartek, 2004). 

In cancer, the regulation of cyclins and CDKs is often disrupted. For 

example, overexpression of cyclin D1, frequently observed in breast and 

esophageal cancers, leads to unchecked cell cycle progression (Musgrove 

& Sutherland, 2009). Similarly, mutations in CDKs or their inhibitors (e.g., 

p16INK4a, p21CIP1) can lead to loss of cell cycle control (Sherr & Roberts, 

2004). The CDK4/6 inhibitors have emerged as effective therapeutic 

agents in treating certain cancers by restoring control over the cell cycle 

(Goel et al., 2018). 

Cancer often involves mutations in genes that regulate the cell cycle, such 

as oncogenes and tumor suppressor genes. Oncogenes, when mutated, 

can promote uncontrolled cell proliferation. For instance, mutations in the 

RAS gene can lead to continuous cell division signals (Pylayeva-Gupta et 

al., 2011). On the other hand, tumor suppressor genes like TP53 and RB1, 

when inactivated, fail to halt cell cycle progression in the presence of DNA 

damage, leading to tumorigenesis (Levine, 1997). 

 

1.4 Exploration of Lung Cancer Dynamics 

1.4.1 Detailed Examination of Lung Cancer 

Lung cancer, with approximately 2.20 million new cases reported in 2020, 

is the most common cancer type worldwide among men and the second 

most prevalent for both genders combined after breast cancer (WCRF, 
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2022). This disease is classified mainly into two types: small cell lung 

cancer (SCLC) and the more common non-small cell lung cancer (NSCLC). 

NSCLC accounts for the majority of cases (Minna et al., 2002). Tobacco 

smoking is recognized as the primary cause of lung cancer; however, not 

all smokers develop the disease, underscoring the role of genetic factors 

in an individual’s risk (Minna et al., 2002). 

The development of lung cancer involves complex interactions between 

genetic mutations and environmental exposures. Significant genetic 

changes include mutations in genes responsible for cell growth, division, 

and DNA repair. These mutations may activate oncogenes or deactivate 

tumor suppressor genes, leading to uncontrolled cell proliferation. 

Environmental factors like tobacco smoke, alongside errors in cell division 

or inherited mutations, are crucial in these processes (NCI, 2021; Minna 

et al., 2002). 

Moreover, advancements in bioinformatics have fundamentally 

transformed cancer genomics by providing tools for the comprehensive 

analysis of genetic data, essential for understanding the molecular basis of 

cancer. Sequencing technologies like RNA sequencing (RNA-seq) have 

been pivotal in profiling transcriptomes of cancer cells, revealing gene 

expression changes during cancer development (Wang et al. 2009; Stark 

et al. 2019). These advancements have facilitated tasks such as sequence 

alignment, gene expression quantification, and identification of 

differentially expressed genes, critical for both basic research and clinical 

applications, informing strategies for disease management and therapy 

(Subramanian et al. 2005; Conesa et al. 2016). 

 

1.4.2 Milestones of Lung Cancer Research 

The history of lung cancer illustrates its transformation from an 

uncommon ailment a century ago to becoming the leading cause of cancer 

death globally today. Initially, lung cancer was so rare that it was 
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considered a reportable condition. However, its incidence began to rise 

dramatically, correlating with the increased popularity of smoking 

following the First World War (Spiro & Silvestri, 2005). By the late 20th 

century, the number of lung cancer deaths in the United States had 

surpassed the combined totals from breast, colon, and prostate cancers, 

underscoring the emergence of lung cancer as a severe public health issue 

(Spiro & Silvestri, 2005). 

The acknowledgment of smoking as the primary catalyst for lung cancer 

was significantly advanced by landmark research. In 1950, Doll and Hill 

directly linked cigarette smoking to lung cancer, challenging societal 

norms and spurring public health initiatives aimed at curbing smoking 

rates (Doll & Hill, 1950). This research, along with the influential 1964 

U.S. Surgeon General’s report, was instrumental in decreasing smoking 

prevalence and, consequently, lung cancer rates in the developed world 

(U.S. Public Health Service, 1964). 

Despite progress in imaging, diagnosis, staging, and treatment 

techniques, survival rates for lung cancer have only modestly improved 

(Spiro & Silvestri, 2005). Today, lung cancer is considered the most 

preventable form of respiratory disease worldwide. This historical 

narrative not only sheds light on the deadly impact of tobacco but also 

emphasizes the critical need for further advancements in research, 

treatment, and prevention strategies to fight this devastating disease 

(Spiro & Silvestri, 2005). 

 

1.4.3 Impact of Demographics on Gene Expression in Lung 

Cancer 

The expression of genes in lung cancer is significantly influenced by 

patient demographics such as age and gender, which in turn affect the 

disease’s pathophysiology and the efficacy of therapeutic interventions. 
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Understanding the extent and nature of these influences is crucial for 

advancing personalized medicine in lung cancer treatment. 

Research into age-related genetic changes has demonstrated significant 

implications for disease progression and response to therapy. For 

example, studies on mesenchymal stem cells by Wilson et al. (2010) 

indicate that molecular changes associated with aging can impact cellular 

functions, suggesting that similar age-related genetic changes in lung 

cancer patients might affect tumor biology and the efficacy of cellular 

repair mechanisms. Although this study focuses on a different cell type, 

the findings are relevant to understanding the broader implications of 

aging on cancer biology. 

Similarly, gender-specific differences in gene expression have been 

documented across various conditions, highlighting potential disparities in 

disease progression and response to treatments. A study by Kolhe et al. 

(2017) identified gender-specific differences in the expression of exosomal 

miRNA in patients with osteoarthritis, pointing to potential similar patterns 

in lung cancer that could influence disease dynamics differently in males 

and females. These differences underscore the necessity for gender-

specific treatment strategies in lung cancer tailored to the unique gene 

expression profiles observed in different patient groups. 

The observed variability in gene expression across different demographics 

highlights the importance of tailoring lung cancer treatments to individual 

patient profiles. Integrating demographic factors allows oncologists and 

researchers to refine their understanding of the molecular drivers of lung 

cancer, thereby improving prognostic assessments and facilitating the 

development of targeted therapies. Utilizing bioinformatics tools to 

analyze large datasets, such as those highlighted by Harbeck et al. 

(2016), enhances the capacity to understand and apply molecular and 

protein markers in clinical decision-making in cancer treatment. 
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1.4.4 Comparative Analysis of Tumor Versus Normal Tissue 

A fundamental aspect of understanding lung cancer involves the 

comparative analysis of gene expression between tumor tissues and 

adjacent normal tissues. This methodology allows researchers to identify 

specific genetic alterations characteristic of cancer development, including 

the upregulation of oncogenes and the downregulation of tumor 

suppressor genes. These genetic distinctions are crucial for the 

development of targeted therapies and serve as biomarkers for early 

diagnosis and monitoring of lung cancer progression (Frost, 2021). 

The analysis reveals complex reorganizations of cellular processes that 

drive cancer development, extending beyond simple increases or 

decreases in gene activity. Such findings are pivotal for identifying 

potential drug targets and enhancing the precision of therapeutic 

interventions. The role of bioinformatics in this research context is 

indispensable, facilitating the efficient processing and analysis of vast 

genomic data produced by high-throughput sequencing technologies. By 

employing differential expression analysis, bioinformatics tools can clearly 

delineate the unique gene expression patterns that distinguish cancerous 

tissues from non-cancerous ones, which is essential for understanding the 

molecular underpinnings of cancer and developing effective prevention, 

diagnostic, and treatment strategies (Frost, 2021). 

Moreover, the use of high-throughput sequencing techniques, such as RNA 

sequencing, is extensively applied to compare gene expression in tumor 

versus normal tissues. This approach provides profound insights into the 

molecular changes occurring in lung cancer. For example, the work by 

Vogelstein et al. (2013) emphasizes how the comprehensive mapping of 

cancer genomes can unveil critical insights into tumorigenic processes, 

guiding the development of more effective therapeutic strategies. 

Additionally, advancements in bioinformatics methodologies have 

significantly enhanced the interpretation of these comparative genomic 

studies. Such advancements allow researchers to handle the complexity 
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and volume of the data involved, leading to discoveries that propel the 

development of personalized medicine (Zhou et al., 2021; Bartha et al., 

2021). 

 

1.4.5 Impact of Smoking on the Genomic Landscape of 

Lung Cancer 

Smoking is a primary risk factor for lung cancer and profoundly influences 

the genomic landscape of the disease by modifying gene expression within 

the tumor microenvironment (Mao et al., 2021; Nakayama & Yamamoto, 

2023). The distinct gene expression patterns associated with smoking—

whether current, former, or never smoker—play a crucial role in the 

carcinogenic process, underlining the complexity of smoking’s impact on 

lung cancer development. 

Research has shown that smoking induces specific mutations and causes 

widespread changes in gene expression that facilitate the onset and 

progression of lung cancer. These genetic alterations include the 

activation of oncogenes and the inactivation of tumor suppressor genes 

pivotal in the pathogenesis of cancer. For example, smoking has been 

linked to the overexpression of genes involved in xenobiotic metabolism 

pathways, which enhance cancer cells’ ability to detoxify harmful 

chemicals in tobacco smoke. In contrast, genes that typically function in 

DNA repair are often found suppressed in smokers, reducing the cells’ 

capability to correct mutations potentially leading to cancer (Hecht, 2003; 

Pratt et al., 2011). 

The biological mechanisms by which smoking affects gene expression are 

multifaceted, involving direct DNA damage from carcinogens in tobacco 

smoke and indirect effects such as chronic inflammation and oxidative 

stress. These mechanisms collectively create a genomic environment 

conducive to cancer development. Reactive oxygen species generated 
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from smoking can cause oxidative damage to DNA, leading to mutations. 

Moreover, smoking-induced inflammation can modify the tumor 

microenvironment, promoting cellular adaptations that facilitate tumor 

growth and metastasis (Reuter et al., 2010; Poirier et al., 2012). 

Understanding these interactions is essential for developing targeted 

interventions and preventive measures. Moreover, it has profound 

implications for personalized medicine as a patient’s smoking history can 

significantly influence both prognosis and the choice of treatment. Certain 

therapies may be more effective for patients whose tumors display specific 

smoking-related genetic profiles, necessitating a personalized approach to 

treatment based on individual genomic alterations (Hecht, 2003; Pratt et 

al., 2011). 

 

1.5 The Foundation of Ontology in Bioinformatics 

In the domain of bioinformatics, ontology provides a structured framework 

for organizing, categorizing, and defining relationships among a vast array 

of biological concepts (Schuurman & Leszczynski, 2008; Gubanova et al., 

2021). It serves as a standardized vocabulary that aids researchers in the 

consistent annotation, sharing, and analysis of biological data across 

studies and databases (Schuurman & Leszczynski, 2008; Gubanova et al., 

2021). Ontologies like the Gene Ontology (GO) and the Human Disease 

Ontology (DO) exemplify how these frameworks contribute to a cohesive 

understanding of biological processes and disease mechanisms 

(Schuurman & Leszczynski, 2008; Gubanova et al., 2021). 

 

1.5.1 Utilizing Ontology in the Context of Human Disease 

Ontologies are particularly valuable in the study of human diseases, where 

they enable the integration of data from disparate sources to uncover 

genetic factors, identify therapeutic targets, and develop novel 
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interventions (Gubanova et al., 2021; Stevens et al., 2000). For example, 

ontologies facilitate the systematic annotation of genes and diseases, 

supporting the integration and querying of data essential for revealing 

new insights into disease pathology and potential treatments (Gubanova 

et al., 2021; Stevens et al., 2000). In the context of glioblastoma 

research, ontology-based gene network reconstruction has identified 

crucial genes and pathways, underscoring the potential of ontologies to 

illuminate disease mechanisms and inform therapeutic strategies 

(Gubanova et al., 2021). 

Ontologies in bioinformatics underpin the organization of biological 

knowledge, enabling the systematic integration, annotation, and analysis 

of complex datasets. By standardizing the description of biological entities 

and their interrelations, ontologies play a pivotal role in bridging the gap 

between data and knowledge, thereby advancing the fields of biology and 

medicine. 

 

1.5.2 The Guilt by Association Principle 

Guilt by association (GBA) is a heuristic widely used in functional 

genomics to infer gene function based on the co-expression of genes 

(Wolfe et al., 2005). The principle of GBA posits that genes with similar 

expression patterns are likely to be involved in the same biological 

processes. This method leverages gene co-expression networks to identify 

functional modules, where clusters of co-expressed genes are analyzed to 

predict the functions of less characterized genes. Studies have shown that 

GBA is broadly applicable across various gene ontology categories, 

providing a powerful tool for annotating gene function and understanding 

biological pathways (Wolfe et al., 2005). 

In the context of biomarker identification, GBA can be applied to feature 

selection, helping to identify relevant and independent biomarkers from 

high-dimensional data sets, such as those obtained from proteomic 
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profiling. By grouping together similar features and selecting the most 

representative ones, GBA-based methods enhance the robustness and 

reliability of biomarker discovery (Shin et al., 2008). This approach not 

only aids in functional annotation but also improves the interpretability 

and accuracy of high-throughput data analyses. 

 

1.6 Databases in Bioinformatics 

In bioinformatics, databases play a pivotal role. They are collections of 

datasets, more conceptual than technical concepts. These databases 

store, organize, and manage a vast amount of biological data, enabling 

researchers to retrieve, analyze, and interpret this data efficiently. 

 

1.6.1 Overview of the Human Protein Atlas 

The Human Protein Atlas (HPA) offers an extensive map of protein 

expression across various contexts including normal tissues, cancerous 

tissues, and cell lines. This knowledge-based portal is notable for its 

annotated protein expression data, which is analyzed using multiple 

antibodies. This comprehensive database aids in identifying the primary 

subcellular localizations of protein targets. As of the latest update, the 

HPA encompasses expression data for over half of the human protein-

coding genes, providing invaluable insights into protein functions and 

interactions (Pontén et al., 2008). 

Moreover, bioinformatics platforms like GEPIA (Gene Expression Profiling 

Interactive Analysis), the Cancer Genome Atlas (TCGA), and cBioPortal 

provide user-friendly interfaces for complex genomic data analysis. These 

platforms include visualizations of gene expression, survival analyses, and 

molecular profiling, which are crucial for identifying potential biomarkers 

for diagnosis, prognosis, and therapeutic targets (Bhandari et al. 2022; 

Libbrecht & Noble 2015; Min et al. 2017). 
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1.6.2 The Cancer Genome Atlas (TCGA): A Comprehensive 

Genomic Resource 

The Cancer Genome Atlas (TCGA) is a critical resource that provides a 

detailed catalog of genomic variations linked to a wide array of cancer 

types. Initially established to decipher the molecular basis of cancer, TCGA 

aims to facilitate the discovery of new therapeutic targets and biomarkers 

(The Cancer Genome Atlas Program, n.d.). By highlighting the genetic 

diversity within and across cancer types, TCGA enhances our 

understanding of cancer heterogeneity. This variability is evident in the 

genetic and molecular profiles of different cancers and even within 

subtypes of the same cancer, highlighting the complexity of oncological 

pathologies. 

TCGA’s research has significantly advanced the identification of potential 

biomarkers for early detection and treatment response by mapping 

prevalent genetic variations in cancers and correlating high expression 

levels of certain cell types with specific cancer types (The Cancer Genome 

Atlas Program, n.d.). These insights into the genetic variations that 

frequently occur in cancer underscore their importance in understanding 

fundamental biological processes and developing targeted cancer 

therapies. 

 

1.6.3 Human Ensemble Cell Atlas (hECA) 

The Human Ensemble Cell Atlas (hECA) is a significant bioinformatics 

resource designed to provide a comprehensive, cell-centric view of human 

biology through the integration of extensive single-cell transcriptomic 

data. As of version 1.0, hECA compiles data from 1 093 299 cells across 

38 human organs and 146 cell types, sourced from 116 published datasets 

(Chen et al., 2022). 

The core of hECA is its unified giant table (uGT), a specialized storage 

engine capable of accommodating a vast array of attributes beyond 
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transcriptomic data, thus supporting multifaceted indexing of cells. This 

table allows for the flexible retrieval and analysis of cell data, enabling 

researchers to perform complex queries and in-depth analyses. 

Complementing the uGT is the unified hierarchical annotation framework 

(uHAF), which standardizes cell type labels across different datasets to 

ensure consistency and comparability. This framework is designed to be 

compatible with other cell ontology systems and is open to future 

upgrades, supporting a comprehensive understanding of cellular diversity 

and function (Chen et al., 2022). 

hECA introduces several innovative applications for cell data. One such 

application is "In Data Cell Sorting," which allows researchers to select 

specific cell populations using complex logic expressions, thereby 

facilitating targeted data retrieval from the assembled cell atlas. Another 

key feature is "Quantitative Portraiture," a system that offers multi-

dimensional representations of genes, cell types, and organs, providing a 

holistic view of biological entities. Additionally, hECA supports 

"Customizable Reference Creation," enabling researchers to create tailored 

references for cell type annotation tasks, thus enhancing the utility of the 

cell atlas in various biomedical studies. 

Overall, hECA serves as a pivotal database in bioinformatics, enabling 

advanced research through its comprehensive assembly of single-cell data 

and innovative tools for data analysis and retrieval. This cell-centric 

approach opens new possibilities for exploring cellular mechanisms and 

interactions across different tissues and conditions. 

 

1.6.4 Gene Ontology (GO) and Reactome Databases 

The Gene Ontology (GO) and Reactome databases are invaluable 

resources in bioinformatics, providing comprehensive frameworks for 

annotating genes and understanding their roles within biological 

processes. These databases enhance the interpretation of genomic data 
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by categorizing genes into hierarchical structures, facilitating the 

discovery of biological insights from complex datasets. 

The Gene Ontology project provides a structured and controlled 

vocabulary for gene annotation across different species, encompassing 

three main categories: Molecular Function (MF), Cellular Component (CC), 

and Biological Process (BP). This ontology serves as a critical tool for 

unifying the representation of gene and gene product attributes, enabling 

consistent descriptions of gene products across databases (The Gene 

Ontology Consortium, 2021). 

Molecular Function (MF) encompasses the elemental activities of a gene 

product at the molecular level, such as “catalytic activity” or “binding” 

(Ashburner et al., 2000). 

Cellular Component (CC) describes the locations relative to cellular 

structures in which a gene product performs a function, such as “nucleus” 

or “membrane” (Ashburner et al., 2000). 

Biological Process (BP) refers to a series of events accomplished by one or 

more ordered assemblies of molecular functions, such as “signal 

transduction” which involves the transmission of molecular signals from a 

cell’s exterior to its interior (The Gene Ontology Consortium, 2021; 

Ashburner et al., 2000). 

By annotating genes with these terms, GO provides a comprehensive view 

of gene functions, which is particularly useful for over-representation 

analysis (ORA) in high-throughput genomic studies. ORA can reveal which 

biological processes, cellular components, or molecular functions are 

overrepresented among a set of differentially expressed genes, thereby 

providing insights into the underlying biological phenomena (Pomyen et 

al., 2015). 

Reactome is an open-source, curated database of pathways and reactions 

in human biology. It provides detailed information about molecular 

events, allowing researchers to map genes to specific biological pathways. 
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Reactome’s pathway browser facilitates the visualization of complex 

biological pathways and their interactions, supporting the understanding 

of gene functions within broader biological contexts (Jassal et al., 2020). 

The integration of gene expression data with Reactome pathway 

annotations allows for a deeper exploration of the functional implications 

of observed gene expression changes. For example, mapping differentially 

expressed genes to Reactome pathways can identify specific pathways 

that are upregulated or downregulated in a disease state, highlighting 

potential targets for therapeutic intervention (Jassal et al., 2020). 

The integration of GO and Reactome annotations into genomic analyses 

enhances the interpretative power of bioinformatics studies. In the context 

of lung cancer research, using these databases allows for a detailed 

exploration of the biological processes and pathways involved in 

tumorigenesis and cancer progression. For instance, mapping lung cancer-

related differentially expressed genes to GO terms and Reactome 

pathways can identify critical processes such as cell cycle regulation, 

apoptosis, and signal transduction that are disrupted in cancer cells 

(Ashburner et al., 2000; Jassal et al., 2020). 

 

1.6.5 Ensembl: A Comprehensive Genomic Resource 

Ensembl is one of the most comprehensive genomic information systems 

available, integrating genome sequences, variation data, and functional 

annotations using ontologies. This integration provides a valuable platform 

for gene expression analysis, facilitating studies on genetic variants and 

their implications in various diseases, including cancer (Yates et al., 

2020). 

Ensembl supports a wide range of genomic data, including gene 

annotations, comparative genomics, regulatory elements, and sequence 

variations (Yates et al., 2020). This comprehensive resource allows 

researchers to access a wealth of genomic data, enhancing the study of 
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gene functions and interactions. Ensembl’s integration with other genomic 

resources and its robust annotation capabilities make it a cornerstone in 

the field of genomics. While Ensembl itself does not directly link genes to 

specific cell types, it supports resources that do, such as 

CellTypeGenomics. This capability is particularly vital in cancer research, 

where understanding the specific contributions of different cell types to 

tumor biology is essential. Ensembl’s ability to integrate gene expression 

data with other genomic data types enables a more holistic and 

comprehensive analysis, crucial for deciphering the intricate relationships 

within genomic data. 

 

1.7 Statistical Analyses in Bioinformatics 

Statistical analyses are crucial in bioinformatics. They enable researchers 

to discern patterns, make predictions, and draw conclusions from vast 

amounts of biological data. These analyses ensure that the findings are 

scientifically valid and reproducible. 

 

1.7.1 Over-Representation Analysis 

Over-Representation Analysis (ORA) is a statistical method widely used in 

genomic studies to determine if a predefined set of genes (such as those 

belonging to specific pathways, functions, or diseases) is represented 

more than expected within a larger set of genes under study (Yu, 2022). 

This method is particularly useful in the context of high-throughput 

experiments, like microarray or RNA Sequencing, where researchers aim 

to identify biological processes or pathways significantly associated with a 

specific condition or disease. 

The central hypothesis in ORA is that genes involved in a particular 

biological function or process are not randomly distributed but are often 

functionally related. For instance, in a gene expression study comparing 
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diseased vs. healthy states, if a specific pathway is significantly altered or 

implicated in the disease, genes associated with that pathway should be 

over-represented among the differentially expressed genes (Pomyen et 

al., 2015). 

To perform ORA, a list of genes of interest (e.g., differentially expressed 

genes) is compared against a background list (usually the entire genome 

or a larger set of genes from which the gene list was derived). Statistical 

methods, such as the hypergeometric test or Fisher’s exact test (Fisher, 

1922), are employed to calculate the probability that the number of genes 

from the list of interest falling into a specific category (like a pathway) is 

higher than expected by chance (Pomyen et al., 2015). The p-values 

obtained from these tests are adjusted for multiple testing, often using 

methods like the Benjamini-Hochberg procedure, to control the false 

discovery rate (Benjamini & Hochberg, 1995; Pomyen et al., 2015). 

ORA allows researchers to move beyond the analysis of individual genes 

to understand the broader biological implications of their data. It helps in 

identifying key pathways or processes potentially disrupted or altered in 

the condition under study, thereby providing insights into disease 

mechanisms or potential therapeutic targets. 

While ORA is a powerful tool, it comes with certain limitations. It assumes 

that genes act independently, which is not always the case in complex 

biological systems (Pomyen et al., 2015). Additionally, the results of ORA 

can be influenced by the size of the gene set categories and the choice of 

background list. Researchers must carefully select their gene lists and 

categories to avoid biases. 

Visualization tools like Venn diagrams and confusion matrices clarify the 

interpretations of ORA, with the Venn diagram illustrating gene set 

overlaps and the confusion matrix showing true and false positives and 

negatives. Examples of a Venn diagram and confusion matrix are given in 

Figure 1.2 and Figure 1.3. 
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Figure 1.2: Example illustration of a Venn diagram for statistical analysis, with all possible solution 
spaces marked (Marzell, 2019). 

 

 

Figure 1.3: Example illustration of a confusion matrix with all possible solutions spaces marked 
(Gupta, 2023). 
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The odds ratio is a statistical measure that quantifies the strength of 

association between a specific condition (such as the presence of a 

disease) and a particular gene or set of genes being studied (Szumilas, 

2010). It compares the odds of a gene being over-represented in a list of 

interest (like differentially expressed genes in diseased tissue) to the odds 

of its representation in a background or reference list (such as the entire 

genome or a control tissue). An odds ratio greater than one implies that 

the gene or genes are more likely to be associated with the condition 

under study than not. An odds ratio of less than one suggests a negative 

association, whereas an odds ratio of exactly one indicates no association. 

This measure is particularly insightful when determining if the presence of 

certain genes is non-randomly associated with the condition being 

investigated in the bioinformatics study. 

 

1.7.2 Advanced Statistical Techniques for Genomic Data 

Analysis 

Genomic data analysis has dramatically evolved with the introduction of 

high-throughput biological techniques, such as gene expression 

microarray and high-throughput sequencing. These advancements allow 

for the simultaneous measurement of thousands of biomolecules, 

necessitating sophisticated statistical methods for data analysis and 

interpretation (Pomyen et al., 2015). 

In the realm of ‘big data’ genomics, multiple hypotheses testing is 

standard practice. This leads to challenges such as the Familywise Error 

Rate (FWER), and the probability of making one or more type I errors 

(false positives) across multiple tests. The Bonferroni correction, a 

straightforward method to control FWER, involves adjusting the 

significance level by the number of hypotheses being tested (Watkins, 

2023). 
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In genomic studies, Fisher’s Exact Test serves as a cornerstone for 

analyzing categorical data when sample sizes are small. This test hinges 

on the hypergeometric distribution to determine the exact probability of 

observing a specific combination of outcomes (Hoffman, 2015). To 

illustrate the situation, we consider a population of size N that has c1 

objects with A and c2 with not-A (𝐴̅). Then we draw a sample of r1 objects 

and find a with A. This is visualized in Table 1.1. The equation for Fisher’s 

Exact Test is given in Equation 1.1 (Hoffman, 2015). It is particularly 

useful when evaluating the significance of associations within 2x2 

contingency tables (confusion matrices), such as the presence or absence 

of a particular gene variant in disease vs. healthy states. 

 

Table 1.1: Overview of the various groups in the hypergeometric population of size N. The 
population has c1 objects with A and c2 with not-A (𝑨̅). The scenario is drawing a sample of r1 
objects and finding a with A (Hoffman, 2015). 

 A 𝑨̅ Total 

In sample a b r1 

Not in sample c d r2 

 c1 c2 N 

𝑷(𝒄𝒉𝒐𝒐𝒔𝒊𝒏𝒈 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑨𝒔) =
(𝒄𝟏

𝒂 ) (𝒄𝟐
𝒃 )

( 𝑵
𝒓𝟏

)
=

𝒄𝟏!
𝒂! 𝒄! × 𝒄𝟐!

𝒃! 𝒅! 
𝑵!

𝒓𝟏! 𝒓𝟐!
=

𝒄𝟏! 𝒄𝟐! 𝒓𝟏! 𝒓𝟐!
𝑵! 𝒂! 𝒃! 𝒄! 𝒅!                                (𝟏. 𝟏) 

 

Where (𝑛
𝑘) denotes the binomial coefficient, quantifying the number of 

ways of picking k unordered outcomes from n possibilities. (𝑁
𝑟1

) are the 

number of possible samples, (𝑐1
𝑎 ) is the number of ways of choosing A in a 

sample of size c1, (
𝑐2
𝑏 ) is the number of ways of choosing 𝐴̅ in a sample 

size N-c1=c2. Since these events are independent, there are (𝑐1
𝑎 ) (𝑐2

𝑏 ) ways 

of choosing a number of As and b number of 𝐴̅s, given by the chain law in 

probability. The exclamation mark here means factorial. For example, 
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consider a scenario where we’re examining a gene’s association with a 

disease. Fisher’s Exact Test allows us to calculate precisely whether the 

observed number of disease cases with the gene variant is higher than 

what we would expect by chance, considering the total number of cases 

and controls, and the overall frequency of the variant. This precision is 

crucial when the dataset is too small to rely on approximations provided 

by other tests like chi-square, ensuring that the conclusions drawn are as 

accurate as possible (Hoffman, 2015). 

When dealing with larger tables or multiple groups, Fisher’s Exact Test can 

be adapted, although the calculations become more complex. In these 

instances, specialized software or online tools can assist in computing the 

probabilities and making sense of the data. The test’s reliance on the 

hypergeometric distribution also means that each selection affects 

subsequent selections, a crucial consideration when sampling without 

replacement – a common feature in biological data where the population 

size is not infinitely large (Hoffman, 2015). The application of Fisher’s 

Exact Test in genomic data analysis is emblematic of the field’s reliance on 

precise, robust statistical tools to draw meaningful conclusions from 

complex biological data. Its use is essential in the face of large-scale data 

analyses, where traditional methods may fall short. 

However, as the number of tests increases, the focus often shifts from 

ensuring all hypotheses are true to a more practical criterion: the False 

Discovery Rate (FDR). FDR is the expected proportion of false discoveries 

among the rejected hypotheses, a concept important in genomics with its 

typically large number of tests (Watkins, 2023). 

To control FDR, the Benjamini-Hochberg procedure is widely used. This 

procedure involves ranking the p-values, setting a threshold, and rejecting 

hypotheses up to the point where the p-value is less than or equal to the 

threshold set by the FDR level (Watkins, 2023). Benjamini-Hochberg 

correction reduces type I errors by adjusting p-values for multiple 
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comparisons, ensuring more reliable results in large-scale genomic 

studies. 

Genomics has dramatically evolved with the introduction of high-

throughput biological techniques such as gene expression microarrays and 

high-throughput sequencing. These advancements allow for the 

simultaneous measurement of thousands of biomolecules, necessitating 

sophisticated statistical methods for data analysis and interpretation 

(Pomyen et al. 2015). 

Furthermore, the development of computational tools for data analysis 

has been essential for advancing our understanding of gene expression 

patterns and their biological implications. Machine learning and 

computational methods enhance the precision of genomic research and its 

applications in oncology (Bhandari et al. 2022). 

 

1.7.3 Comprehensive Gene Expression Analysis with the 

limma Package 

The limma package, short for Linear Models for Microarray Data, is a 

cornerstone in the field of bioinformatics, widely used for gene expression 

analysis across both microarray and RNA sequencing technologies. Initially 

developed to address the challenges of high-dimensional genomic 

datasets, limma has evolved into a robust statistical framework capable of 

addressing the complexities associated with modern genomic research 

(Ritchie et al., 2015). 

At its core, limma utilizes linear modeling techniques, allowing for the 

assessment of differential gene expression across various experimental 

conditions. This approach is especially beneficial for multifaceted 

experiments involving multiple factors or covariates. The lmFit function 

exemplifies this, fitting a linear model to each gene, which effectively 

delineates differential expression across diverse groups defined by clinical 

or phenotypic traits (Smyth, 2004). 
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Subsequent to model fitting, the eBayes function calculates empirical 

Bayes statistics, crucial for enhancing the reliability of differential 

expression results by stabilizing variance estimates across genes. This 

process is particularly vital in genomic studies where sample sizes are 

typically small, thus requiring robust statistical methods to bolster the 

confidence in the findings (Smyth, 2004). 

The voom function is integral in transforming count data from RNA 

sequencing into log-counts per million, effectively adjusting for the 

inherent mean-variance relationship in count data. This transformation is 

critical for preparing the data for subsequent analysis using linear models 

that are more statistically appropriate (Law et al., 2014). 

For hypothesis testing, limma offers the makeContrasts and contrasts.fit 

functions. These functions facilitate the construction of contrast matrices 

that align with specific experimental hypotheses, enabling comparisons 

such as between tumor and normal tissues or among different patient 

subgroups. The topTable function then identifies the most statistically 

significant genes, prioritizing them based on their evidence of differential 

expression (Ritchie et al., 2015). 

A practical application of limma can be seen in lung cancer research, 

where it is used to explore complex genomic interactions, identifying 

pivotal genes that may influence disease progression, response to 

therapy, or disease onset. 

 

1.8 Methods for Gene Classification 

The classification of genes based on their expression in various cell types 

is a fundamental aspect of genomics, crucial for deciphering complex 

biological processes and disease mechanisms. Understanding the 

expression patterns of genes across different cell types enables 

researchers to uncover the roles of these genes in health and disease, 

identify potential biomarkers, and develop targeted therapies. This 
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chapter explores significant methodologies for gene classification, focusing 

on the Human Protein Atlas (HPA) approach, cellular deconvolution 

techniques, and the theoretical foundations and applications of cell type-

specific marker genes. The integration of these methodologies provides a 

comprehensive framework for understanding cellular diversity and 

function in both healthy and diseased states. 

 

1.8.1 The Human Protein Atlas Gene Classification Approach 

The HPA conducted a systematic classification of all protein-coding genes 

according to their expression patterns across various cell types, building 

upon a methodology described earlier (Karlsson et al., 2021). Specifically, 

2005 genes were identified as “Cell Type–Enriched”, where the expression 

of a gene, measured as adjusted transcripts per million (TPM), was found 

to be at least fourfold higher in one specific cell type compared to all other 

analyzed cell types. Additionally, 2893 genes were classified as “Group-

Enriched”, denoting genes that were enriched in a set of up to 10 cell 

types. Moreover, there are 9062 “Cell Type–Enhanced” genes, where the 

expression of such genes was at least fourfold higher in one cell type 

compared to the mean expression across all other cell types (Karlsson et 

al., 2021). 

Interestingly, 4257 genes exhibited a low cell type specificity, showing 

roughly equivalent levels across all examined cell types (Uhlén, 2015; 

Karlsson et al., 2021). A mere 11% of the genes were detected in all the 

cell types analyzed, reinforcing prior estimates about the count of 

universal “housekeeping” genes that are indispensable in every cell 

(Karlsson et al., 2021). The classification results further highlighted the 

testis as having the most cell type elevated genes, aligning with previous 

findings. Numerous elevated genes were also pinpointed in the eye, 

especially in photoreceptor cells, bipolar cells, and horizontal cells, as well 

as in the ciliated cells of the lung (Karlsson et al., 2021). 
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An integral aspect of HPA’s methodology is the fusion of multiple analysis 

platforms, facilitating the validation of single-cell data via antibody-based 

image profiling in tissues (Karlsson et al., 2021). This approach, using 

immunohistochemistry, provides a detailed view not only at the single-cell 

level but also gives insights into the exact spatial pattern, variations 

between cells, and subcellular localization. The study by Karlsson et al. 

provided examples of this validation, emphasizing proteins that were 

specifically expressed in unique structures, including renal collecting 

ducts, retinal photoreceptor cells, early spermatids, intercalated discs in 

cardiomyocytes, and hepatic Kupffer cells (Pomyen et al., 2015; Karlsson 

et al., 2021). 

 

1.8.2 Cellular Deconvolution 

Cellular deconvolution, a pivotal technique in bioinformatics, focuses on 

estimating the proportions of various cell types in mixed tissue samples. 

Its significance lies in unraveling the complexities within tissues composed 

of different cell populations, like those found in tumors. Traditional gene 

expression analyses often fail to capture the nuances of these mixed 

tissues, leading to overlooked signals from less prevalent cell types (Avila 

Cobos et al., 2018). Cellular deconvolution addresses this by imputing 

both cell type abundances and their specific expression profiles, enhancing 

our understanding of gene expression in mixed cell populations. 

CIBERSORTx emerges as a novel method in this realm, coined as "in silico 

flow cytometry." Developed by Newman et al., it leverages gene 

expression data to approximate the abundances of distinct cell types 

within a mixed cell population (Newman et al., 2019). What sets 

CIBERSORTx apart is its capability to process bulk gene expression data 

along with a signature matrix file, which outlines the expression profile for 

each cell type. Users have the flexibility to employ existing signature 

matrices or generate custom ones by supplying pure cell population 
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expression profiles. With the advent of single-cell RNA Sequencing, 

CIBERSORTx also allows for the derivation of signature matrices from such 

data. 

CIBERSORTx consists of two key analysis modules. The "Cell Fractions" 

module measures the proportions of different cell subpopulations within 

bulk tissue expression profiles. It's distinctive for its capability to 

deconvolve bulk RNA Sequencing data using signature genes derived from 

either single-cell transcriptomes or sorted cell populations (Newman et al., 

2019). The "Gene Expression" module, on the other hand, infers cell type-

specific expression profiles from bulk tissue transcriptomes, without the 

need for physical cell sorting (Newman et al., 2019). This module 

functions in two modes: "Group-Level," which generates representative 

transcriptome profiles for each cell type, aiding the understanding of 

context-dependent changes in expression, and "High-Resolution," aimed 

at deducing sample-level expression variations across distinct cell types, 

suitable for exploring variations in cell type expression without relying on 

pre-defined biological groupings. 

CIBERSORTx's implementation on a web platform, backed by R and PHP 

(Hypertext Preprocessor), ensures accessibility and ease of use, further 

enhanced by a user-friendly interface and comprehensive guides, 

including step-by-step tutorials (Newman et al., 2019). 

Each cell type, with its distinct gene expression profile, contributes to the 

overall molecular information in bulk samples. Consequently, analyses like 

differential gene expression can be affected by variations in cell type 

proportions. Addressing this, cellular deconvolution algorithms have found 

applications in a variety of samples, improving interpretability, and 

reducing the confounding effects of cellular heterogeneity (Avila Cobos et 

al., 2018). 
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1.8.3 Theoretical Foundations and Applications of  

Cell Type-Specific Marker Genes 

Cell type-specific (CTS) genes, also known as marker genes, play a pivotal 

role in the analysis of RNA transcriptional data by defining cellular identity. 

These genes are typically highly expressed in one cell type but are lowly 

expressed in others, which allows them to provide essential insights into 

the core set of genes that characterize a particular cell type (Qiu et al., 

2021). Understanding marker genes is crucial for filling gaps in our 

knowledge of cell biology and could elucidate the cellular origins of various 

pathologies. 

Marker genes are extensively used to annotate cell clusters, analyze the 

cellular composition of bulk tissues, and estimate cell type fractions via 

deconvolution techniques. They also enable the estimation of cell type-

specific expression directly from bulk tissue samples (Qiu et al., 2021). 

This wide array of applications underscores the importance of marker 

genes in enhancing our understanding of complex biological systems and 

the intricacies of cellular function. 

A common approach to identifying marker genes involves conducting 

statistical tests on cell type-specific transcriptome data, typically derived 

from single-cell RNA sequencing (scRNA-seq). Genes that demonstrate 

significant expression differences between a specific cell type and all 

others are regarded as marker genes for that cell type. However, despite 

the appeal of this approach, challenges such as the high cost of single-cell 

sequencing, difficulties in obtaining viable cells from certain tissues like 

the human brain, and the inherent noisiness of scRNA-seq data can 

complicate the direct acquisition and analysis of CTS data. Furthermore, 

using scRNA-seq data from other species to infer marker genes poses 

additional challenges due to potential disparities in gene expression 

profiles across species. 
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Qualitative Marker Genes in HPA and hECA 

The Human Protein Atlas (HPA) utilizes an extensive selection of 

qualitative marker genes to classify cell types. These markers include both 

those from original publications and additional markers used in pathology 

diagnostics, which are chosen based on their well-established specificity to 

certain cell types. This selection is guided by a strong correlation between 

the gene’s cluster-specific expression and expected expression patterns 

(Karlsson et al., 2021). These markers are critical for accurately 

annotating the vast array of cell types identified in the HPA, aiding 

significantly in enhancing the precision of cell type classifications. 

Similarly, the Human Ensemble Cell Atlas (hECA) employs a combinatory 

approach that incorporates both canonical, knowledge-based marker 

genes and data-derived differentially expressed genes (DEGs) to construct 

a comprehensive marker reference. For cell types whose marker genes 

were not given in the original studies, the hECA team surveyed markers 

from multiple sources, including Gene Ontology, PanglaoDB, the Human 

Protein Atlas, and CellMarker to replenish the marker references. In most 

cases, the top 10 DEGs for each cluster in each dataset were considered, 

ensuring the robustness of cell type classifications (Chen et al., 2022). 

In practical applications, these marker genes are indispensable for the 

precise identification and characterization of cell types within tissues, 

especially in pathologies such as cancer where cellular heterogeneity is 

pronounced. By providing a means to classify cells based on definitive 

expression profiles, marker genes facilitate a deeper understanding of 

cellular diversity and function in health and disease. Both the HPA and 

hECA databases serve as crucial resources for the scientific community, 

providing access to detailed gene expression profiles and cellular 

localization data which are instrumental in various scientific investigations. 
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1.9 Software Development Process 

The development of the CellTypeGenomics package is delineated through 

a structured sequence of phases, each integral to the realization of a 

robust and functional software tool. This sequence comprises requirement 

analysis, design and prototyping, coding, and comprehensive testing, each 

of which plays a crucial role in the software’s lifecycle. 

The process begins with an extensive requirement analysis phase, during 

which detailed consultations with bioinformatics experts are conducted. 

This interaction is essential to capture the precise needs and identify 

potential deficiencies within existing software tools. Such engagements 

are fundamental in establishing the functional requirements of the 

CellTypeGenomics package, ensuring its utility and relevance to the target 

user base. 

Subsequent to requirement analysis is the design and prototyping phase. 

In this stage, initial models of the software are constructed and are 

subject to iterative refinements based on user feedback. This iterative 

design process is indicative of agile development methodologies, which 

prioritize flexibility and user feedback over rigid planning and development 

schedules (Patton, 2014). Agile practices are particularly adept at 

accommodating changes in user requirements and emerging technologies, 

thereby enhancing the adaptability and longevity of the software. 

The coding phase is executed using Python, a programming language 

well-regarded for its extensive library support and readability—attributes 

that are particularly advantageous in the domain of bioinformatics (Van 

Rossum & Drake, 2009). The choice of Python is strategic, facilitating the 

integration of complex data structures and algorithms while maintaining 

clarity and ease of maintenance. 

The culmination of the development process is marked by a 

comprehensive testing phase. This phase employs a combination of unit 

and integration testing to ensure the software’s reliability and accuracy 
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(Myers et al., 2011). Unit tests evaluate the functionality of individual 

software components, whereas integration tests assess the cohesive 

operation of these components within the full software system. Such 

rigorous testing is essential to ascertain that the software adheres to the 

specified requirements and performs effectively under varied operational 

scenarios. 

Through these structured phases, the development of the 

CellTypeGenomics package is meticulously orchestrated to meet the 

specified design and functional criteria. This approach not only ensures 

compliance with initial specifications but also imbues the software with the 

necessary flexibility to adapt to future advancements in the field of 

bioinformatics. 

 

1.10  Research Questions 

Investigating the molecular landscape of lung cancer requires a detailed 

examination of gene expressions and their interactions with cellular and 

environmental factors. Utilizing comprehensive genomic data from The 

Cancer Genome Atlas (TCGA), this study employs the CellTypeGenomics 

tool, which leverages data from The Human Protein Atlas (HPA) to 

enhance its analyses and conducts gene ontology analysis to address 

several pivotal research questions aimed at elucidating the complex 

dynamics within cancer cells. 

The primary focus of this research is to identify genes that are 

differentially expressed between tumor and normal lung tissues, 

specifically determining which genes are upregulated or downregulated in 

tumors compared to normal tissues. This inquiry is essential for 

understanding the cellular context of these gene expression changes and 

gaining insights into their roles in lung cancer. The CellTypeGenomics tool 

uses data from HPA to identify cell types based on Ensembl gene 

identifiers and associates these cell types with differential gene 
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expressions observed in TCGA data, thereby enhancing our understanding 

of the cellular dynamics contributing to tumor development and 

progression. 

The broader biological implications of these differentially expressed genes 

are further explored through Reactome pathway analysis. By mapping 

these genes onto specific biological pathways, the research seeks to 

delineate the functional pathways that are altered in lung cancer. These 

comprehensive analyses provide a deep view of gene functions, their 

interactions, and the biochemical pathways disrupted in the disease. 

Furthermore, the study leverages TCGA data to perform gene ontology 

(GO) analysis, which categorizes differentially expressed genes into 

biological processes (BP), cellular components (CC), and molecular 

functions (MF). The results of the GO Biological Processes are visualized 

using Directed Acyclic Graphs (DAGs), providing a structured view of the 

biological processes involved and their hierarchical relationships. This 

visualization is crucial for interpreting the complex interactions and 

expression levels of genes across different samples and conditions, 

offering insights into the molecular landscape of lung cancer. 

Additionally, this thesis examines how smoking status modifies gene 

expression profiles in lung cancer and identifies the key molecular 

pathways predominantly affected by these changes. By analyzing the 

differential gene expression linked to smoking, the research will shed light 

on the molecular mechanisms altered by this significant environmental 

factor. 

Finally, the robustness and applicability of the CellTypeGenomics package 

are critically evaluated. This evaluation aims to determine to what extent 

the tool can analyze TCGA lung cancer data, using HPA data to identify 

cell-type origins across various datasets and experimental conditions. This 

assessment will help validate the utility of the CellTypeGenomics package 

in broader genomic research applications. 
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This chapter provides a detailed account of the methodologies and tools 

utilized in this study, focusing on the application and development of the 

CellTypeGenomics Python package. The primary aim is to explore the cell-

type origins of differentially expressed genes in lung cancer, leveraging 

the capabilities of this package to interpret and analyze complex genomic 

data. Two primary data sources, the Human Protein Atlas (HPA) and The 

Cancer Genome Atlas (TCGA), are employed in this research. Each serves 

a distinct purpose within the research framework. HPA data provides 

detailed annotations and normalized expression levels of genes across 

various tissues and cell types, crucial for associating specific genes with 

their corresponding cell types. Conversely, TCGA data, serving primarily 

as a test data source, offers extensive gene expression profiles from lung 

cancer samples. Additionally, marker genes from the Human Ensemble 

Cell Atlas (hECA) are integrated to enhance the analysis. 

The chapter begins with an overview of data acquisition methods for HPA, 

TCGA, and hECA, followed by detailed processes for data preparation and 

integration. Subsequently, it outlines the statistical methodologies 

employed, including differential expression analysis and pathway analysis, 

and describes the visualization techniques used to represent the data. The 

development and application of the CellTypeGenomics package are then 

discussed, along with the quality control and validation measures 

implemented to ensure the robustness and reliability of the findings. 

 

 

 

2 Materials and Methods 



 
  39 

2.1 Data Sources 

This section outlines the acquisition of data from the Human Protein Atlas 

(HPA) and The Cancer Genome Atlas (TCGA), which are central to the 

analyses performed in this study. Additionally, it includes the integration 

of marker genes from the Human Ensemble Cell Atlas (hECA) to enhance 

the analysis. 

 

2.1.1 Human Protein Atlas (HPA) Data Acquisition 

The Human Protein Atlas dataset was sourced from its official website, 

specifically from the downloadable data section. The dataset, labeled 

"proteinatlas.tsv.zip," is part of Human Protein Atlas version 23.0 (Human 

Protein Atlas, 2023). This dataset includes extensive gene annotations 

covering gene synonyms, Ensembl gene IDs, descriptions, and detailed 

RNA and protein expression data across various tissues and cell types. The 

comprehensive nature of the HPA dataset, with its detailed data on gene 

expression across different cell types, is invaluable for associating specific 

genes with particular cell types, which is crucial for this study. 

 

2.1.2 The Cancer Genome Atlas (TCGA) Data Acquisition 

For this project, comprehensive genomic data was acquired from The 

Cancer Genome Atlas (TCGA), a resource aggregating genomic 

information across various cancer types. Data retrieval was facilitated 

through the Genomic Data Commons (GDC) Data Portal, enabling access 

to harmonized cancer datasets tailored to lung cancer research (The 

Cancer Genome Atlas Program, 2024). The downloaded files contained 

lung cancer tissue data from adenomas, adenocarcinomas and squamous 

cell neoplasms. 
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The specific datasets procured included bulk RNA sequencing data and 

associated clinical metadata critical for identifying gene expression 

patterns in cancerous tissues of the lung. The selection criteria applied in 

the GDC Data Portal for downloading the data were specified to ensure 

reproducibility and to cater to the specific requirements of our research: 

- Access Level: Open, ensuring all retrieved data is publicly 

accessible. 

- Primary Site: Bronchus and lung, focusing our analysis specifically 

on lung-related cancers. 

- Data Category: Transcriptome Profiling, selected to provide a 

comprehensive view of gene expression within the samples. 

- Data Type: Gene Expression Quantification, which provides precise 

measurement of gene expression levels. 

- Experimental Strategy: RNA-Seq, a method chosen for its high 

throughput and accuracy in quantifying transcripts (Wang et al., 

2009). 

A total of 2001 files were downloaded, comprising approximately 8.48 GB 

of data, reflecting a robust dataset focused on lung cancer. These files are 

in TSV format, facilitating easy integration and analysis within 

bioinformatics tools. This approach ensures that our data selection is 

tailored to maximize the relevance of our findings on lung cancer 

genomics. 

 

2.1.3 Marker Genes from HPA and hECA 

Marker genes, which are indicative of specific cellular or tissue states, 

played a pivotal role in our analysis. These genes were identified from 

both the Human Protein Atlas (HPA) and the Human Ensemble Cell Atlas 

(hECA) datasets. From HPA, our selection focused on genes that 

demonstrated a high tissue-specific expression. We specifically employed 

a four-fold numerical threshold for marker gene selection set by HPA, 



 
  41 

which facilitated the identification of genes significantly expressed in 

distinct tissues. This threshold was crucial for the Fisher test in the 

original cell-type origin analysis, and the relevant data were directly 

extracted from the TSV file mentioned in chapter 2.1.2. 

For the ontology function of the CellTypeGenomics package, we utilized 

the marker genes data from supplementary data S2 in the HPA study 

(Karlsson et al., 2021). This subset of data was chosen due to its higher 

quality and manual curation, which provided more reliable and precise 

markers for various cell types. 

In hECA, we extracted marker genes for the ontology function using the 

uHAF marker reference.xlsx file (Chen et al., 2022), which compiled a 

robust reference of marker genes, including both knowledge-based 

marker genes and data-derived DEGs. 

 

2.2 Data Preparation and Integration 

This section describes the methods used to prepare and integrate data 

from HPA, TCGA, and hECA. It covers normalization techniques, alignment 

of Ensembl gene identifiers, and the creation of a unified analysis pipeline 

to ensure consistent and reliable comparisons across samples. 

  

2.2.1 Human Protein Atlas Data Processing 

After downloading, the compressed file was extracted to access the TSV 

file. The dataset from this TSV file was then structured for analysis using 

Pandas, a Python library renowned for its data-handling capabilities. The 

focus was on specific columns that provided insights into the normalized 

expression levels of genes across different tissues and cell types, namely: 
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- RNA tissue specific nTPM 

- RNA single cell type specific nTPM 

- RNA blood cell specific nTPM 

- RNA blood lineage specific nTPM 

These columns provide valuable insights into the normalized expression 

levels of genes in different tissues and cell types. A Python script 

aggregated Ensembl gene IDs based on their expression in various cell 

types, resulting in a comprehensive JSON file that mapped different cell 

types to their associated genes as per the HPA dataset. 

 

2.2.2 The Cancer Genome Atlas Data Processing 

Building on the foundational understanding of limma as detailed in  

chapter 1.7.3, this section translates its theoretical capabilities into 

practical applications, specifically for our analysis of The Cancer Genome 

Atlas (TCGA) data. The initial step involves loading the limma library, 

crucial for employing the sophisticated linear modeling techniques that the 

package is known for. Our analysis workflow commences with the loading 

of gene expression data and associated metadata from CSV files. These 

data sets are meticulously linked by aligning sample identifiers, facilitating 

an integrated approach to subsequent analyses. 

 

Following data importation, we undertake a meticulous preprocessing of 

the metadata. This involves standardizing the sample types to ensure 

consistency across the data set, a step critical for the integrity of the 

analyses that follow. We focus specifically on samples identified as 

Primary Tumor and Solid Tissue Normal, filtering out all irrelevant or 

incomplete data entries. This selective approach not only streamlines 

subsequent analyses but also enhances the accuracy of our differential 

expression analysis. 
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2.2.3 Data Normalization and Filtration 

Normalization of the expression data is executed utilizing the voom 

function of limma, transforming RNA-Seq count data into log2-counts per 

million, a format amenable to the linear modeling techniques that limma 

executes with high precision. This step is essential to adjust for the 

inherent technical and biological variability in the data, ensuring that the 

differential expression analyses are robust and reliable. 

With normalized data, we proceed to differential expression analysis. 

Employing limma’s lmFit function, we fit linear models to each gene, 

systematically exploring differences in expression between conditions such 

as tumor versus normal tissues. This modeling is crucial for elucidating 

the molecular underpinnings of lung cancer. To further refine our analysis, 

specific contrasts are defined using the makeContrasts function, and these 

are fitted to the models using contrasts.fit. These contrasts are specified 

in Chapter 2.3.2. The application of the eBayes function follows, 

enhancing the reliability of our results by stabilizing variance estimates—a 

critical feature when dealing with the typically small sample sizes in 

genomic studies.  

To ensure that only biologically significant changes are highlighted, a 

multi-step filtering process is applied to the topTable results from limma. 

Initially, a threshold of 1 is set for log(FPKM) (Fragments Per Kilobase of 

transcript per Million mapped reads, representing average expression). 

This preliminary filtering ensures that only genes with a minimum 

expression level are considered for further analysis. 

Following this initial filtering, a dynamic logFC threshold is applied. This 

dynamic threshold is estimated based on the relationship between 

average expression (AveExpr) and absolute logFC for significant genes. 

This approach is particularly useful when dealing with a high number of 

significant genes, as it provides a robust fit for the dynamic threshold. 
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The dynamic filtering process begins by modeling the relationship between 

the average expression of genes and their absolute log-fold change values 

using a loess (locally estimated scatterplot smoothing) regression. This 

regression establishes a threshold that varies according to the average 

expression levels of the genes. 

Next, the dynamic threshold is adjusted to ensure it meets a minimum 

required value of abs(logFC) greater than one 1. This adjustment sets a 

baseline threshold that all genes must meet or exceed, even if their 

average expression levels are higher. This step ensures that the threshold 

is both flexible and stringent enough to capture significant biological 

changes. 

Using the computed dynamic threshold function, genes are then filtered 

based on whether their absolute log-fold change meets or exceeds the 

threshold for their average expression levels. This filtering process 

ensures that only genes showing significant changes in expression are 

retained for further analysis. 

Results are then saved in CSV format, ensuring that they are accessible 

for further analysis. 

 

2.2.4 Marker Genes Processing 

The conversion of marker gene symbols to Ensembl Gene IDs was 

performed through a systematic, multi-stage approach, leveraging various 

bioinformatics tools to maximize the resolution of gene identifiers. This 

process was crucial for integrating gene expression data into wider 

genomic analyses, especially when correlating cell-type specific 

expressions with genomic datasets. 

Initially, the mygene Python package was utilized to convert gene symbols 

from HPA and hECA datasets into Ensembl IDs. This tool provided a direct 

query interface to genomic databases, facilitating the retrieval of gene 
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IDs. Despite mygene’s utility, several genes were either not found or 

there were multiple hits per gene when converting to Ensembl Gene IDs. 

Due to unresolved symbols from the first iteration, the biomart package 

was employed. It connected directly to the Ensembl BioMart database 

offering a more robust search for Ensembl IDs through another layer of 

validation. This iteration managed to obtain more unique mappings 

between gene symbols and Ensembl IDs that were faulty in the first 

iteration. 

The remaining unresolved gene symbols were then queried using the 

REST API provided by Ensembl, which is capable of accessing up-to-date 

and comprehensive genetic data. This final automated step helped identify 

several Ensembl IDs, although some genes remained unmatched due to 

various reasons including possible obscurity or recent reclassifications in 

genomic databases. 

The few persistently unmatched genes were subjected to manual searches 

using The Human Gene Database and other literature sources to assign 

the most plausible Ensembl IDs. This step was crucial to ensure 

completeness of the dataset. 

 

2.3 Statistical Analysis and Tools 

This section elaborates on the statistical methodologies and computational 

tools used to analyze the integrated data from the Human Protein Atlas 

(HPA) and The Cancer Genome Atlas (TCGA). Focusing on statistical 

approaches, the analysis utilizes the limma package, a comprehensive 

bioinformatics tool designed for the analysis of gene expression data 

through linear models. 

The process begins with the application of the limma package to perform 

differential expression analysis. This analysis is critical as it identifies 

genes that are significantly upregulated or downregulated in lung cancer 
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samples compared to normal tissue samples. The ability of limma to 

handle complex experimental designs and large datasets makes it 

particularly suitable for the genomic data used in this study.  

Data normalization is a preliminary step before differential expression 

analysis, where RNA-seq data from TCGA are transformed into log2-

counts per million using limma's voom function. This normalization 

method adjusts for library size differences and other technical variabilities, 

facilitating a more accurate comparison of gene expression levels across 

samples. 

Following the identification of differentially expressed genes, the results 

are integrated with pathway analysis to ascertain which biological 

pathways are enriched with these genes. This step is performed using 

bioinformatics tools that map genes to known pathways, highlighting 

potential mechanisms underlying lung cancer and suggesting targets for 

therapeutic intervention. 

Additionally, intersection analysis is employed to group genes with similar 

expression patterns, indicating shared regulatory mechanisms or 

functional roles in lung cancer. This intersection analysis helps in 

understanding the complex biological relationships and can guide further 

experimental design or hypothesis generation. 

Quality control measures are stringently applied throughout the analysis 

to ensure the reliability and reproducibility of the results. These include 

multiple hypothesis testing adjustments using the Benjamini-Hochberg 

procedure to control the false discovery rate, ensuring that the findings 

are statistically significant. 

Building on these analytical foundations, the following chapters delve 

deeper into the specific limma designs and contrasts used in our study, 

examining both the full dataset and a critical subset defined by smoking 

categories. Chapter 2.3.1 discusses the configuration of experimental 

setups tailored to our research questions, illustrating how the design 
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choices enhance the robustness of our statistical conclusions across both 

the complete dataset and its subsets. Chapter 2.3.2 explores the specific 

comparisons made between different conditions, including those based on 

smoking status, to discern the subtle nuances in gene expression that are 

pivotal for understanding lung cancer progression. Together, these 

chapters extend our discussion on the statistical framework and 

bioinformatics tools employed, providing a thorough exploration of the 

methodologies that drive our research in genomic data interpretation. 

 

2.3.1 Constructing the Design Matrix 

In this section, we discuss the construction of the design matrix for both 

the full dataset and the subset focusing on smoking data. The design 

matrix is a crucial component in linear modeling as it defines the structure 

of the covariates and their interactions used in the analysis. 

 

Full Dataset 

For the full dataset, the design matrix incorporates the interaction 

between sample type and gender, along with age as a continuous 

variable. 

 

Design Matrix for Full Dataset 

First, we create an interaction term between Sample.Type and gender. 

This interaction term allows us to consider the combined effect of these 

two variables on gene expression. 

 

metadata_filtered$SampleSex <- with(metadata_filtered, 

interaction(Sample.Type, gender, sep="_")) 
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Next, we construct the design matrix. The term normalized_age is 

included as an independent variable. It is treated as a continuous variable, 

representing the normalized age of the patients. This inclusion allows us 

to assess the effect of age on gene expression directly. 

 

design <- model.matrix(~ 0 + SampleSex + normalized_age, 

data = metadata_filtered) 

 

In this matrix, SampleSex represents the interaction of sample type and 

gender, while normalized_age captures the continuous age variable. This 

design matrix enables the analysis of gene expression variations 

considering both the interaction of categorical variables (sample type and 

gender) and the continuous effect of age. 

 

Smoking Dataset 

For the smoking dataset, we extend the interaction term to include 

smoking status, thereby incorporating the effect of smoking on gene 

expression. 

 

Design Matrix for Smoking Dataset: 

First, we create an interaction term that includes Sample.Type, gender, 

and smoking_category. This comprehensive interaction term accounts for 

the combined effect of these variables. 

 

metadata_filtered$interaction_term <- 

with(metadata_filtered, interaction(Sample.Type, gender, 

smoking_category)) 
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Next, we construct the design matrix for the smoking dataset. Similar to 

the full dataset, normalized_age is included as an independent variable. 

 

design <- model.matrix(~ 0 + interaction_term + 

normalized_age, data = metadata_filtered) 

 

In this matrix, interaction_term represents the combined interaction of 

sample type, gender, and smoking category, while normalized_age 

continues to capture the continuous age variable. This design matrix 

allows for the analysis of gene expression variations considering the 

interaction of categorical variables (sample type, gender, smoking status) 

and the continuous effect of age. 

By constructing these design matrices, we ensure that our linear models 

can effectively incorporate and analyze the influence of multiple covariates 

and their interactions on gene expression. 

 

2.3.2 Regression Contrasts for both Datasets 

The contrasts were defined to investigate specific biological hypotheses 

and differences between sample groups in our dataset.  

 

Full Dataset 

The following contrasts were used for the full dataset. 

 

Tumor vs. Normal: This contrast compares gene expression levels 

between primary tumor samples and solid tissue normal samples. It is 

formulated in the code block below. 
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TumorVsNormal = (SampleSexPrimaryTumor_male + 

SampleSexPrimaryTumor_female)/2 - 

(SampleSexSolidTissueNormal_male + 

SampleSexSolidTissueNormal_female)/2 

 

This approach averages the expression levels for male and female 

samples in both the tumor and normal tissue groups to provide a robust 

comparison. 

Tissue x Sex Interaction: This contrast examines the interaction effect 

between tissue type (tumor or normal) and sex (male or female). It is 

expressed below. 

 

TissueXSex = (SampleSexPrimaryTumor_male - 

SampleSexPrimaryTumor_female) - 

(SampleSexSolidTissueNormal_male - 

SampleSexSolidTissueNormal_female) 

 

This formulation captures the differential expression due to the interaction 

between sex and tissue type. 

Male vs. Female: This contrast explores differences in gene expression 

between male and female samples, irrespective of tissue type. It is 

formulated below. 

 

MaleVsFemale = (SampleSexPrimaryTumor_male + 

SampleSexSolidTissueNormal_male)/2 - 

(SampleSexPrimaryTumor_female + 

SampleSexSolidTissueNormal_female)/2 
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By averaging the expression levels of male and female samples across 

both tissue types, this contrast isolates the effect of sex on gene 

expression. 

 

Smoking Dataset 

The following contrasts were used for the smoking dataset. 

 

Tumor vs. Normal: This contrast compares gene expression levels 

between primary tumor samples and solid tissue normal samples. It is 

formulated in the code block below. 

 

    TumorVsNormal = 

(interaction_termPrimaryTumor.female.0 + 

interaction_termPrimaryTumor.male.0 + 

interaction_termPrimaryTumor.female.1 + 

interaction_termPrimaryTumor.male.1 + 

interaction_termPrimaryTumor.female.2 + 

interaction_termPrimaryTumor.male.2) / 6 -  

                    

(interaction_termSolidTissueNormal.female.0 + 

interaction_termSolidTissueNormal.male.0 + 

interaction_termSolidTissueNormal.female.1 + 

interaction_termSolidTissueNormal.male.1 + 

interaction_termSolidTissueNormal.female.2 + 

interaction_termSolidTissueNormal.male.2) / 6 

 

This approach averages the expression levels for male and female 

samples in both the tumor and normal tissue groups to provide a robust 

comparison. 
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Tissue x Sex Interaction: This contrast examines the interaction effect 
between tissue type (tumor or normal) and sex (male or female). It is 
expressed below. 

 

TissueXSex = ( 

(interaction_termPrimaryTumor.male.0 - 

interaction_termPrimaryTumor.female.0) + 

(interaction_termPrimaryTumor.male.1 - 

interaction_termPrimaryTumor.female.1) + 

(interaction_termPrimaryTumor.male.2 - 

interaction_termPrimaryTumor.female.2)) / 3 -  

                 
((interaction_termSolidTissueNormal.male.0 - 
interaction_termSolidTissueNormal.female.0) + 
(interaction_termSolidTissueNormal.male.1 - 
interaction_termSolidTissueNormal.female.1) + 
(interaction_termSolidTissueNormal.male.2 - 
interaction_termSolidTissueNormal.female.2)) / 3 

 

This formulation captures the differential expression due to the interaction 

between sex and tissue type. 

Male vs. Female: This contrast explores differences in gene expression 

between male and female samples, irrespective of tissue type. It is 

formulated below. 

 

    MaleVsFemale = ( 

interaction_termPrimaryTumor.male.0 + 

interaction_termPrimaryTumor.male.1 + 

interaction_termPrimaryTumor.male.2 + 

interaction_termSolidTissueNormal.male.0 + 

interaction_termSolidTissueNormal.male.1 + 

interaction_termSolidTissueNormal.male.2) / 6 -  

(interaction_termPrimaryTumor.female.0 + 

interaction_termPrimaryTumor.female.1 + 
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interaction_termPrimaryTumor.female.2 + 

interaction_termSolidTissueNormal.female.0 + 

interaction_termSolidTissueNormal.female.1 + 

interaction_termSolidTissueNormal.female.2) / 6 

By averaging the expression levels of male and female samples across 

both tissue types, this contrast isolates the effect of sex on gene 

expression. 

Current vs. Former (Tumor): This contrast explores differences in gene 

expression between current smokers and former smokers, on tumor 

tissue. It is formulated below. 

 

    CurrentVsFormerTumor = 

(interaction_termPrimaryTumor.female.2 + 

interaction_termPrimaryTumor.male.2) / 2 -  

                           

(interaction_termPrimaryTumor.female.1 + 

interaction_termPrimaryTumor.male.1) / 2 

 

By contrasting the expression levels of current smokers and former 

smokers across tumor tissue, this contrast isolates the effect of not 

smoking anymore on gene expression. 

Current vs. Never (Tumor): This contrast explores differences in gene 

expression between current smokers and never smokers, on tumor tissue. 

It is formulated below. 

 

    CurrentVsNeverTumor = 

(interaction_termPrimaryTumor.female.2 + 

interaction_termPrimaryTumor.male.2) / 2  - 
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(interaction_termPrimaryTumor.female.0 + 

interaction_termPrimaryTumor.male.0) / 2, 

    FormerVsNeverTumor = 

(interaction_termPrimaryTumor.female.1 + 

interaction_termPrimaryTumor.male.1) / 2 - 

(interaction_termPrimaryTumor.female.0 + 

interaction_termPrimaryTumor.male.0) / 2 

 

By contrasting the expression levels of current smokers and never 

smokers across tumor tissue, this contrast isolates the effect of never 

having smoked on gene expression. 

Current vs. Former (Normal): This contrast explores differences in 

gene expression between current smokers and former smokers, on normal 

tissue. It is formulated below. 

 

    CurrentVsFormerNormal = 

(interaction_termSolidTissueNormal.female.2 + 

interaction_termSolidTissueNormal.male.2) / 2 -  

                            

(interaction_termSolidTissueNormal.female.1 + 

interaction_termSolidTissueNormal.male.1) / 2 

 

By contrasting the expression levels of current smokers and former 

smokers across normal tissue, this contrast isolates the effect of not 

smoking anymore on gene expression. 
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Current vs. Never (Normal): This contrast explores differences in gene 

expression between current smokers and never smokers, on normal 

tissue. It is formulated below. 

 

    CurrentVsNeverNormal = 

(interaction_termSolidTissueNormal.female.2 + 

interaction_termSolidTissueNormal.male.2) / 2  - 

(interaction_termSolidTissueNormal.female.0 + 

interaction_termSolidTissueNormal.male.0) / 2, 

    FormerVsNeverNormal = 

(interaction_termSolidTissueNormal.female.1 + 

interaction_termSolidTissueNormal.male.1) / 2- 

(interaction_termSolidTissueNormal.female.0 + 

interaction_termSolidTissueNormal.male.0) / 2 

 

By contrasting the expression levels of current smokers and never 

smokers across normal tissue, this contrast isolates the effect of never 

having smoked on gene expression. 

 

2.4 Development of the CellTypeGenomics Package 

The development of the CellTypeGenomics package is a key component of 

this thesis, designed to provide robust tools for exploring the cell-type 

origins of differentially expressed genes in lung cancer by leveraging 

complex genomic data. This package utilizes detailed data from the 

Human Protein Atlas (HPA) to accurately map Ensembl gene identifiers to 

specific cell types, enabling a nuanced understanding of gene expression 

patterns within various cellular contexts. 
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2.4.1 Rationale for Development 

The CellTypeGenomics package was developed to address the need for 

specialized tools capable of utilizing HPA data for detailed cell type 

identification. This functionality is crucial for studies on complex diseases 

such as lung cancer and psoriasis, where understanding cellular dynamics 

is key to uncovering disease mechanisms and identifying potential 

therapeutic targets. 

 

2.4.2 Core Functionality 

At the heart of the CellTypeGenomics package is its capability to map 

Ensembl gene identifiers to cell types using the extensive numerical data 

available from HPA. This fundamental feature allows for the detailed 

analysis of the cellular origins of gene expressions, which is critical for 

investigating the pathogenesis of diseases. The output from this analysis 

includes structured data frames that detail the associations between 

genes and cell types, complete with statistical analyses such as p-values 

and odds ratios. These outputs provide researchers with precise and 

actionable data on gene expression patterns. 

 

2.4.3 Additional Features 

The CellTypeGenomics package includes advanced functionalities that 

enhance its analytical capacity. It supports both numerical and qualitative 

marker genes from the Human Protein Atlas (HPA), enhancing the 

precision of cell-type specificity analysis. Additionally, the package 

supports qualitative marker genes from the Human Ensemble Cell Atlas 

(hECA), allowing for a broader exploration of cell types in various 

datasets. The capability to analyze tissue origins further broadens the 

genetic analysis, including both cell-type and tissue-specific gene 
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expression patterns. These features are invaluable for studies aimed at 

understanding the broader biological contexts of gene expressions. 

 

2.4.4 Handling Data from Multiple Sources 

The CellTypeGenomics package is adept at processing input lists of 

Ensembl gene identifiers from diverse genomic datasets, such as The 

Cancer Genome Atlas and psoriasis-specific studies. By analyzing these 

lists and returning structured DataFrames that detail gene-cell type 

associations, the package demonstrates its flexibility and broad 

applicability in genomic research, enabling comprehensive analyses that 

incorporate a wide variety of biological and medical contexts. 

 

2.4.5 Optimization and Validation 

Extensive efforts have been made to optimize the CellTypeGenomics 

package for handling large genomic datasets efficiently. It has been 

thoroughly tested with both synthetic benchmarks and real-world data to 

ensure its accuracy and reliability, making it a dependable tool for 

scientific research. 

 

2.4.6 Documentation and Community Engagement 

To aid users and foster an open-source community, comprehensive 

documentation is provided alongside the CellTypeGenomics package. 

Available on GitHub and PyPI, the documentation offers detailed 

instructions on installation, usage, and troubleshooting, encouraging 

collaboration and ongoing development by researchers worldwide (Føleide, 

2024). 
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2.5 Visualization Techniques 

Effective visualization is crucial in genomic research as it aids in the 

interpretation and communication of complex data sets. This section 

describes the visualization techniques employed in this study to represent 

data obtained from the Human Protein Atlas (HPA) and The Cancer 

Genome Atlas (TCGA). These techniques were integral in elucidating the 

relationships between differentially expressed genes, their associated cell 

types, and the biological pathways involved in lung cancer. 

 

2.5.1 Dot Plots 

Dot plots were extensively used to display the expression levels of genes 

across different samples and conditions. This method was particularly 

useful in showcasing the variability and distribution of gene expression 

within and between groups defined by clinical or biological parameters. In 

this study, dot plots helped visualize the expression profiles of genes 

identified as differentially expressed in lung cancer tissues compared to 

normal tissues, as well as differences influenced by factors such as patient 

sex and smoking status. The dot plots were created using the Matplotlib 

library in Python, which provides extensive customization options and 

robust functionality for creating detailed and informative plots. 

 

2.5.2 Upset Plots 

Upset plots, a modern alternative to Venn diagrams, were utilized to 

visualize the intersections of multiple gene sets and their relationships. 

These plots were particularly useful in this study for analyzing the overlap 

between differentially expressed genes across various conditions and 

subsets within the data. By using the UpSetPlot library in Python, the 

study was able to generate clear and concise representations of complex 

relationships in the data, highlighting significant overlaps and unique 
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expressions within subgroups. This visualization technique was crucial for 

identifying patterns that are not immediately obvious from raw data alone. 

 

2.5.3 Directed Acyclic Graphs (DAGs) 

Directed Acyclic Graphs (DAGs) were employed to visualize the 

hierarchical relationships among Gene Ontology (GO) terms associated 

with differentially expressed genes. These graphs played a crucial role in 

elucidating the biological pathways and processes impacted by changes in 

gene expression observed in lung cancer. By mapping the enriched GO 

terms in a DAG, the study highlighted the interconnected nature of 

biological processes and identified key pathways.  

First, the Gene Ontology OBO (Open Biological and Biomedical Ontologies) 

file was streamed from an online URL and temporarily saved to disk using 

the requests library. This step facilitated the local processing of the GO 

terms. Next, GO terms with associated p-values and parent-child 

relationships were loaded from JSON files. These terms were then sorted 

by p-value to prioritize the most significant terms for analysis. To organize 

the GO terms, they were structured into hierarchical layers based on their 

parent-child relationships. Each term was assigned to a specific layer, 

which represents its level in the hierarchy (top significant, second most 

significant, etc.). For visual distinction in the DAG plots, each layer of GO 

terms was assigned a distinct color inspired by the rainbow spectrum. This 

coloring scheme helps to easily differentiate between various levels of the 

hierarchy. To ensure the accuracy of the hierarchical relationships, GO 

terms were loaded again from the OBO file. This step verified that the 

terms and their relationships were correctly represented. Finally, DAG 

plots were created using the GOATOOLS library. Each term in the DAG 

was color-coded according to its assigned layer. The resulting plots were 

saved as PNG files for further analysis and presentation. The creation of 

DAGs involved the API of gProfiler, which was used to fetch information 
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from the Gene Ontology (GO) database, providing comprehensive 

functional annotations for the gene lists, essential for over-representation 

analysis (ORA) (Kolberg et al., 2023). The use of these tools made it 

possible to organize and display the relationships among GO terms in a 

structured and visually appealing manner. 

 

2.6 Quality Control and Validation 

In the rigorous framework of this study, ensuring the reliability and 

accuracy of data analysis is paramount. Quality control and validation 

measures are extensively implemented across all stages of the research to 

maintain data integrity and validate the analytical methods used. 

Quality control begins at the data acquisition stage, where initial checks 

on data completeness and correctness are performed. For the RNA-seq 

data from The Cancer Genome Atlas and expression data from the Human 

Protein Atlas, quality control measures include the verification of gene 

identifiers and inspection of expression level distributions to identify 

potential outliers or anomalies. 

The normalization of data, a crucial step in quality control, is performed 

using the voom function of the limma package, which normalizes RNA-seq 

data to log2-counts per million to adjust for library size variations and 

other technical biases. This step is critical for ensuring that subsequent 

analyses such as differential expression are based on reliable and 

comparable data. 

Validation of the analytical results involves several steps to confirm the 

biological plausibility and accuracy of the findings. Differential expression 

results, particularly those related to sex differences in gene expression, 

are subjected to rigorous validation. For example, the differential 

expression of genes between male and female samples in the full dataset 

and in the smoking dataset underwent additional verification. This 
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included matching the differentially expressed genes against established 

lists of identifiers known to differentiate male from female gene 

expressions. Genes such as DDX3Y and ZFY, known for their roles in sex 

determination and differentiation, showed expected patterns of higher 

expression in male samples. Conversely, genes like XIST, involved in X-

chromosome inactivation, exhibited underexpression in male samples, 

aligning with known biological functions. 

Furthermore, validation checks included the statistical analysis of log fold 

changes and adjusted p-values to confirm significant differences in gene 

expression. This comprehensive validation not only confirms the 

robustness of the dataset and the analytical procedures employed but also 

enhances the foundational knowledge necessary for further investigations 

into the genetic determinants of sex-based differences in lung cancer. 

Additionally, the validation process extends to other sex-specific genes, 

particularly those located on the Y chromosome in male samples. The 

expression patterns observed were consistent with their chromosomal 

location and biological roles, providing further evidence of the accuracy of 

the differential expression analysis. 

These quality control and validation processes ensure that the results 

presented are not only statistically significant but also robust and 

biologically meaningful. This rigorous approach enhances the credibility of 

the findings and supports the integrity of the research methodology 

employed in this study.  
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This chapter presents a comprehensive analysis of cell-type specific gene 

expression in lung cancer, emphasizing the differential effects of 

demographic variables and smoking status. Utilizing the CellTypeGenomics 

package, the study meticulously examines data from The Human Protein 

Atlas (HPA) and The Cancer Genome Atlas (TCGA), enabling detailed 

exploration of how differentially expressed genes (DEGs) correlate with 

specific cell types and demographic factors. 

The structure of the analysis is designed to directly address specific 

research questions posed in Chapter 1.10, detailing the relationship 

between gene expression and factors such as age, gender, smoking 

status, and cell type origins. 

Chapter 3.1 introduces the CellTypeGenomics package and outlines its 

fundamental role in mapping Ensembl gene identifiers to cell types using 

data from the Human Protein Atlas. This chapter directly addresses the 

second research question regarding the cell type origins of DEGs, 

demonstrating how this package can link DEGs to specific cell types, which 

is essential for understanding the cellular dynamics of gene expression in 

lung cancer. 

Chapter 3.2 presents the validation of the CellTypeGenomics package 

using gene lists from psoriasis studies. This chapter focuses on confirming 

the package's utility in linking gene expression to cell type data within the 

context of psoriasis, showcasing the versatility of the package. 

Chapter 3.3 delves into the gene expression analysis related to tumor 

versus normal tissue using the full dataset from TCGA. This chapter is 

pivotal in addressing the first research question about identifying DEGs in 

lung cancer. It explores fundamental differences in gene expression 

between tumor tissues and normal counterparts, employing statistical 

3 Results 



 
  63 

methods to identify DEGs and using precise cell-type mapping to relate 

specific cell types to cancerous behavior. The findings from this chapter 

contribute significantly to our understanding of the molecular alterations 

associated with tumor development. 

Chapter 3.4 focuses on the gene expression analysis related to smoking 

using a subset of the TCGA dataset. This chapter investigates how 

smoking status influences gene expression in lung cancer, addressing the 

fourth research question regarding the impact of smoking on gene 

expression. By analyzing DEGs associated with smoking status, this 

chapter highlights key molecular pathways differentially affected by 

smoking, thus contributing to a more nuanced understanding of 

environmental influences on lung cancer pathology. 

Chapters 3.3 and 3.4 collectively address the fifth research question about 

the validation and applicability of the CellTypeGenomics package in a 

cancer-specific context by utilizing the package's capabilities to attribute 

DEGs to specific cell types and pathways, thus validating its efficacy in 

handling large, complex genomic datasets. Throughout these chapters, 

both Gene Ontology (GO) and Reactome pathway analyses are extensively 

used to investigate the biological processes, cellular components, and 

molecular functions associated with the DEGs. This approach addresses 

the third research question by providing deeper insights into the molecular 

mechanisms underpinning lung cancer and elucidating how identified 

DEGs participate in critical biological pathways such as cell cycle 

regulation, DNA repair, immune responses, and cellular signaling. 

Each chapter employs advanced bioinformatics tools and comprehensive 

genomic data to systematically address the intertwined dynamics of 

genetic, demographic, and environmental factors in lung cancer. Through 

this structured analysis, the study enhances understanding of lung cancer 

at the molecular level, potentially informing future research, diagnosis, 

and treatment strategies. This approach not only elucidates the role of 

specific cell types in lung cancer but also highlights the potential influence 
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of lifestyle factors such as smoking on the disease's genetic expression 

landscape. 

 

3.1 The CellTypeGenomics Package 

In this chapter, we present the results obtained using the 

CellTypeGenomics package, a Python tool developed for analyzing gene 

expressions concerning specific cell types. The CellTypeGenomics package 

was developed during the fall of 2023, as part of our specialization project 

with psoriasis genes from a study by Solvin et al. from 2023, used for 

validation (Føleide & Mittet, 2023). The package was further developed in 

2024 to include more data sources. Initially, we outline the rationale 

behind the package’s creation, emphasizing its need and utility in the 

realm of genomic research. The main results of our initial psoriasis study 

are presented in chapter 3.2. 

The development of the CellTypeGenomics package was catalyzed by the 

necessity for an efficient method to pinpoint the cell-type origins of 

differentially expressed genes, leveraging numerical data from the Human 

Protein Atlas. Existing tools, while comprehensive, either lacked the 

specific functionality we required or did not adequately address our 

research needs. For instance, methods for automated cell type annotation 

on scRNA-seq data, such as those discussed by Pasquini et al. (2020), did 

not use Human Protein Atlas (HPA) for identifying cell type origins, a 

crucial aspect of our analysis. Similarly, traditional RNA sequencing and 

microarray techniques often fail to detect differentially expressed genes 

that are identifiable through single-cell RNA sequencing, as demonstrated 

by Chen et al. (2020). Furthermore, tools like the Single-cell Mapper 

(scMappR), which infer cell-type specificities of differentially expressed 

genes (Sokolowski et al., 2021), do not fully meet the analytical demands 

of our project. These gaps in existing methodologies underscore the 



 
  65 

necessity for developing a specialized package tailored specifically to our 

research objectives. 

 

3.1.1 Usage of the CellTypeGenomics Package 

CellTypeGenomics is an open-source Python package, designed to assist 

researchers in exploring the cell-type origins of differentially expressed 

genes. The first version of the CellTypeGenomics package from 2023 

utilized numerical data (proteinatlas.tsv) from the Human Protein Atlas 

(HPA) to generate a prioritized list of genes, potentially underscoring over-

represented genes in the dataset. This data consisted of 16 742 unique 

genes, with a range of 50 to 3053 genes associated with each cell type 

across the data. The average amount of genes per cell type accounted to 

571.7. Building upon this, the second version of the package from 2024 

incorporated qualitative marker genes from both the Human Ensemble 

Cell Atlas (hECA) and HPA. As described in chapter 1.8.3, these marker 

genes are based on existing literature. The marker genes from HPA 

consisted of 148 unique genes, with a range of 1 to 7 genes per cell type 

and an average of 2.9 genes per cell type. The hECA marker genes 

consisted of 479 unique genes, a range of 1 to 34 genes per cell type and 

an average of 5.0 genes per cell type. In addition, there is an option to 

return tissue origins of genes using HPA data. The package is easily 

accessible on the Python Package Index (PyPI; https://pypi.org/) and can 

be installed with a simple command: pip install celltypegenomics. Its core 

functionality, the celltypefishertest function, processes a list of Ensembl 

IDs containing differentially expressed genes and returns a prioritized 

DataFrame, highlighting genes that are potentially over- or under-

represented in certain cell types based on the overlap with the HPA or 

hECA data. 

An example of how to specify qualitative markers from hECA in the 

CellTypeGenomics package is shown below in code. 

https://pypi.org/
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result = celltypefishertest(list_of_ensembl_ids, alpha=0.05, 

heca=True) 

 

The default data source is numerical HPA marker genes, so then only 

list_of_ensembl_ids is needed as specified input. For qualitative 

markers from HPA, set hpa_marker_genes=True. To analyze tissue 

origins, set tissue=True. The alpha parameter can be adjusted from its 

default value of 0.05. 

 

3.1.2 CellTypeGenomics Package Example 

In this example, Genelist1 is read by the CellTypeGenomics package, 

returning a Pandas Dataframe. The following code allows for a list of 

Ensembl codes to be converted into a list of cell types. The top five most 

significant results are returned. These results are shown in Table 3.1. 

with open(‘Genelist1.txt’, ‘r’) as f:  

genelist_content = f.read().splitlines() 

import CellTypeGenomics 

CellTypeGenomics.celltypefishertest(genelist_content).head(5) 

 

Table 3.1: Dataframe returned by the CellTypeGenomics package for the example code 

Cell Type P-value 
Odds 
ratio 

Count 
in both 

Count in 
genelist 
not cell 

type 

Count in 
cell type 

not 
genelist 

Count 
in 

neither 
Adjusted 
p-value 

Suprabasal 
keratinocytes 

4.52e-70 26.86 78 122 464 19498 4.47e-68 

Basal keratinocytes 7.36e-38 21.50 43 157 251 19711 3.64e-36 

Squamous epithelial 
cells 

1.28e-23 11.34 36 164 379 19583 4.25e-22 

Serous glandular cells 1.44e-18 13.18 25 175 214 19748 3.58e-17 

Basal respiratory cells 2.15e-18 11.38 27 173 270 19692 4.25e-17 
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3.1.3 CellTypeGenomics Package Overview 

Figure 3.1 presents the workflow used by the CellTypeGenomics package, 

tracing the path from data acquisition at the Human Protein Atlas to the 

analytical results. It visually articulates the sequence of operations, 

clarifying complex methodologies for the audience. The diagram 

underscores stages such as data handling, computational analysis through 

Python, core functionalities of the package, and the availability of the tool 

in PyPI. Each aspect serves to deepen understanding of the research 

process and the execution of the study’s methods. 

 

Figure 3.1: The streamlined process from data acquisition in Human Protein Atlas to the analytical 

output of the CellTypeGenomics package is depicted, demonstrating the stages of data handling, 

computational analysis, and result generation (Føleide & Mittet, 2023).  
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3.2 Validation of the CellTypeGenomics Package with Gene Lists 

from Psoriasis Data 

This section examines the genetic basis of psoriasis using the 

CellTypeGenomics package to analyze two gene lists: Genelist1, which 

includes overexpressed genes comparing lesional psoriatic skin to healthy 

control skin, and Genelist2, which includes underexpressed genes 

comparing lesional psoriatic skin to healthy control skin. This approach 

aimed to explore the cellular dynamics of psoriasis. 

The analysis revealed several key findings, visualized in Figure 3.2. 

Suprabasal keratinocytes, basal keratinocytes, and squamous epithelial 

cells showed strong associations with psoriasis in Genelist1. Notably, 

serous glandular cells were the only cell type found in both Genelist1 and 

Genelist2 with significant odds ratios, underscoring their central role in the 

disease's mechanisms. 

Further analysis of Genelist2 revealed significant associations for cell types 

such as Leydig cells, fibroblasts, astrocytes, peritubular cells, and 

oligodendrocyte precursor cells. These distinct expression patterns 

between Genelist1 and Genelist2 underscore the complex regulatory 

mechanisms involved in psoriasis.  

Additionally, the same analysis was conducted using qualitative markers 

from the Human Protein Atlas (HPA) and the Human Ensemble Cell Atlas 

(hECA). This provided further significant results. For hECA qualitative 

markers, monocytes (adjusted p-value = 0.0145, odds ratio = 37.9) and 

neutrophilic granulocytes (adjusted p-value = 0.0145, odds ratio = 15.6) 

showed significant associations with psoriasis. Intriguingly, Kupffer cells—

typically resident in the liver—demonstrated a notably significant 

association (adjusted p-value = 0.0158, odds ratio = 202). The presence 

of liver-associated Kupffer cells among significantly associated cell types 

raises questions about systemic involvement and cross-talk between 

distant organ systems in psoriasis, suggesting a potentially broader 
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systemic component to the disease pathophysiology (Gelfand et al., 2006; 

Takeshita et al., 2017). 

These findings align with existing literature on the role of keratinocytes in 

psoriasis. Keratinocytes are known to be central in the pathogenesis of 

psoriasis, interacting with immune cells and contributing to inflammation 

and abnormal skin cell proliferation. Studies highlight the role of cytokines 

such as IL-17 in inducing keratinocyte proliferation and differentiation 

abnormalities, which are hallmarks of psoriasis (Nestle, Kaplan, & Barker, 

2009; Lowes, Suárez-Fariñas, & Krueger, 2014). Moreover, recent insights 

into the pathophysiology of psoriasis emphasize the intricate network of 

immune cells, including monocytes and neutrophils, and their contribution 

to the disease's chronic inflammatory state (Krueger & Bowcock, 2005). 

This broader understanding suggests that psoriasis may not only be a 

localized skin disorder but also involve multiple organ systems, potentially 

mediated by systemic immune responses. 

Both the current analysis and the study by Solvin et al. (2023) 

acknowledge the significant role of keratinocytes in psoriasis. This analysis 

shows a notable presence of differentiated keratinocytes in lesional versus 

non-lesional and control skin, reinforcing the link between keratinocyte 

activity and psoriatic lesions. Similarly, the Solvin study, through cellular 

deconvolution, identified differentiated keratinocytes as the most 

prominent cell type among the DEGs in lesional psoriatic versus healthy 

control skin. This alignment underscores the pivotal role of keratinocytes 

in the pathophysiology of psoriasis. 

Comparing the results of these two studies is challenging due to 

differences in analytical methods. The current study employs the 

CellTypeGenomics package, designed specifically to analyze cell type 

origins of differentially expressed genes, whereas the Solvin et al. study 

(2023) used CIBERSORTx for cellular deconvolution. CIBERSORTx, known 

for estimating cell proportions in mixed tissue samples, likely offers 

differing sensitivity and specificity in detecting cell type fractions 
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compared to the current method. These methodological differences can 

influence the detection and interpretation of minor cell populations or 

subtle expression changes. 

 

Figure 3.2: Dot Plot of p-values and odds ratios for psoriasis Genelist1 and Genelist2. 
Symbol size vary with odds ratios (OR). The color gradient from red to purple represents the 
associated metric (e.g., p-value, -log10 scale), highlighting the significance of each observation. 
Red dots indicate the most significant observations, with purple representing the least significant 
within the set thresholds. 
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3.3 Gene Expression Analysis Related to Tumor vs Normal 

Tissue 

In this section, we examine the genetic underpinnings of lung cancer 

using data from The Cancer Genome Atlas (TCGA). The primary objective 

is to analyze cell-type specific gene expressions within lung cancer tissues 

to elucidate the complex interactions between genetic factors and the 

disease. 

The statistical overview of the dataset includes an UpSet plot to illustrate 

the distribution and interconnectivity of significant gene clusters. This plot 

highlights the balance between overexpressed and underexpressed genes 

within the dataset, offering a clear visualization of differential gene 

expression patterns. 

Further, we investigate marker genes from the Human Protein Atlas (HPA) 

and the Human Ensemble Cell Atlas (hECA). These marker genes are 

pivotal in identifying cell types exhibiting significant differential 

expression. The analysis of these genes provides insights into the cellular 

composition of lung cancer tissues, enhancing our understanding of the 

disease’s molecular landscape. 

Reactome pathway analysis is conducted to map the significant gene 

clusters to biological pathways, providing a deeper understanding of the 

functional implications of the observed gene expression changes. This 

analysis is complemented by Gene Ontology (GO) classifications, which 

further categorize the significant genes into biological processes, cellular 

components, and molecular functions. 

A Directed Acyclic Graph (DAG) is employed to visualize the hierarchical 

relationships and biological pathways, emphasizing the interconnectivity 

and shared functions relevant to lung cancer. This graphical 

representation aids in identifying key pathways and their roles in disease 

progression. 
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To ensure the robustness of our findings, a sanity check is performed, 

validating the consistency and reliability of the differential gene expression 

results. This step is crucial for confirming the accuracy of our 

computational analyses. 

Additionally, dot plots of differential gene expression in both tissues and 

cell types are generated. These plots display the odds ratios and adjusted 

p-values, highlighting the statistical significance of gene expression across 

various conditions. 

Overall, this section leverages advanced bioinformatics tools and 

comprehensive datasets to dissect the molecular mechanisms of lung 

cancer, providing a solid foundation for future research and potential 

therapeutic interventions. 

 

3.3.1 Lung Cancer Full Dataset Statistics 

This section provides a comprehensive overview of the demographic and 

clinical characteristics of the lung cancer dataset obtained from The 

Cancer Genome Atlas (TCGA). This dataset includes detailed information 

on gender distribution, age statistics, and other relevant clinical variables, 

forming a robust foundation for subsequent genomic analyses. 

The dataset comprises 1879 lung cancer cases, with 1165 males and 714 

females. The mean age for males is 63.31 years (SD = 15.58), while for 

females it is 61.69 years (SD = 18.11). The age at diagnosis for the 

overall cohort shows a mean of approximately 62.7 years and a median of 

approximately 65.9 years. Additionally, the metadata includes 

comprehensive records for a total of 1997 samples, providing a broad 

base for in-depth analysis of lung cancer. This extensive dataset supports 

a detailed exploration of the molecular mechanisms underlying the 

disease, considering both demographic and clinical variables. 

A detailed examination of the dataset reveals that male patients tend to 

be older than female patients across most cancer stages. The age 
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difference were most notable in Stage IV, where males have a mean age 

of 63.6 years compared to 60.1 years for females, with 29 male and 16 

female patients.  

These demographic statistics highlight the age distribution and gender 

composition within the lung cancer cohort, which are important for 

understanding the patient population and ensuring the robustness of the 

genomic analyses that follow. The age and stage-specific trends 

underscore the importance of considering demographic factors in lung 

cancer research and may inform targeted strategies for early detection 

and treatment. This analysis provides essential context for the genomic 

studies conducted in subsequent sections, emphasizing the need to 

account for demographic and clinical variability. 

 

3.3.2 Differentially Expressed Genes of the Full Dataset 

The UpSet plot in Figure 3.3 provides a comprehensive visualization of the 

distribution and interconnectivity of significant gene clusters based on 

their differential expression in the lung cancer dataset. This plot is 

essential for elucidating the complex relationships among gene clusters, 

particularly concerning overexpression and underexpression across 

different conditions. 

The UpSet plot employs color coding to distinguish between 

underexpressed and overexpressed genes: red indicates underexpressed 

genes, while green signifies overexpressed genes. The left histogram 

categorizes gene clusters by size, displaying the number of elements in 

each cluster. The accompanying bar chart at the top quantifies the 

elements per cluster, emphasizing the balance between overexpressed 

and underexpressed genes. 

A detailed examination of the dataset reveals several key findings. In the 

Tumor vs. Normal expression patterns, there are 893 genes significantly 

overexpressed in tumor tissues compared to normal tissues 
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(TumorVsNormal_up), with 853 of these genes being exclusively 

overexpressed in tumor tissues. In contrast, TumorVsNormal_down 

includes 3069 genes exclusively underexpressed in tumor tissues 

compared to normal tissues from a total of 3122 significantly 

underexpressed genes. 

Regarding age-related expression patterns, the analysis identified 28 

genes significantly overexpressed in relation to age (Age_up) and 43 

genes significantly underexpressed (Age_down). 

The UpSet plot further highlights the interconnectivity among different 

gene clusters, illustrating shared pathways and mechanisms between 

TumorVsNormal and Age-related expression patterns. This 

interconnectivity offers insights into potential therapeutic targets and 

emphasizes the importance of considering both tumor-specific and age-

related factors in lung cancer research. 
 

 

Figure 3.3: UpSet Plot of Significant Gene Interactions for Full Dataset. This plot illustrates 
the distribution and interconnectivity of significant gene interactions based on differential 
expression—red indicating underexpressed and green signifying overexpressed genes. The left 
histogram categorizes clusters by size, while the network diagram displays their relationships. The 
top bar chart quantifies the elements per cluster, highlighting the balance between overexpressed 
and underexpressed genes. The plot emphasizes distinct expression patterns in tumor versus 
normal tissues and age-related changes, showcasing intricate relationships among gene 
interactions. 
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3.3.3 Differential Expression Analysis of Marker Genes for Full 

Dataset 

The analysis of qualitative marker genes from the Human Protein Atlas 

(HPA) and the Human Ensemble Cell Atlas (hECA) identifies significant 

differential gene expressions, categorized as either over- or 

underexpressed. Figure 3.4 illustrates a comparative analysis of marker 

genes across various conditions, with larger symbols indicating higher 

odds ratios, suggesting stronger associations between gene expression 

and specific cell types. Upward-pointing triangles denote overexpressed 

genes, while downward-pointing triangles indicate underexpressed genes. 

A gradient bar reflects statistical significance.  

The study spans age-related changes, tissue-specific expressions 

influenced by sex, and comparisons between tumor and normal tissues. 

Notably, Alveolar cells type II consistently show underexpression in the 

TissueXSex condition for both hECA and HPA. This cell type also exhibits 

significant underexpression in the TumorVsNormal condition for hECA, 

highlighting their sensitivity to various biological influences, including sex-

specific factors and tissue-specific changes. This contrasts with findings by 

Chaudhary et al. (2023), where alveolar type II cells, upon KRASG12D 

activation, show enhanced plasticity and tumor-initiating capabilities, 

suggesting a differential expression profile under oncogenic stress 

compared to non-cancerous conditions. 

Bronchial epithelium basal cells display highly significant p-values in tumor 

versus normal tissue comparisons, suggesting their important role in 

tumor biology and potential as markers for cancer progression. These cells 

are overexpressed in TumorVsNormal, TissueXSex, and Age conditions for 

HPA. 

Alveolar cells type I are significantly underexpressed in the TissueXSex 

and TumorVsNormal conditions for hECA, pointing to crucial regulatory 

mechanisms affecting their expression. Macrophages and endothelial cells 

show significant underexpression in TumorVsNormal conditions for HPA 
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and hECA respectively, indicating their roles in tumor immune evasion and 

the vascular changes associated with tumor growth. 

This comprehensive analysis underscores the complex nature of gene 

regulation across various biological contexts and lays a strong foundation 

for future research aimed at uncovering the underlying mechanisms. 

Integrating these findings with additional omics data such as proteomics 

and metabolomics will enhance our understanding of the regulatory 

networks involved. 

 
Figure 3.4: Dot Plot for full dataset displaying differential expression of qualitative 
marker genes in cell types from the Human Protein Atlas (HPA) and Human Ensemble 
Cell Atlas (hECA). Symbol sizes indicate odds ratios (ORs), with direction denoting 
overexpression (upward triangles) and underexpression (downward triangles). The color gradient 
bar shows the statistical significance (-log10 p-value). 
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3.3.4 Reactome Pathway Analysis for Full Dataset 

A comprehensive analysis using the Reactome Pathway database was 

conducted on the full dataset to identify significant pathways associated 

with differentially expressed genes in lung cancer. This analysis focused 

particularly on variations resulting from tumor versus normal tissue 

comparisons and differences influenced by age and sex. Figure 3.5 

presents a detailed comparative analysis, visually demonstrating how 

these conditions affect gene expression. 

The analysis revealed overexpressed pathways in tumor conditions 

associated with the cell cycle that are highly significant, underlining their 

crucial role in the progression of lung cancer. The genes involved in these 

pathways have potential as biomarkers for detecting and monitoring the 

disease. 

Underexpressed age-related changes were also notable, particularly for 

the terms DNA Damage/Telomere Stress Induced Senescence, DNA 

methylation and RNA Polymerase I Promoter Opening. These findings 

suggest a potential dysregulation in the cellular aging processes that could 

influence tumorigenesis in lung tissue. The underexpression of genes 

associated with DNA damage response and telomere maintenance could 

imply a reduced capacity for senescence induction, potentially allowing 

cells with damaged DNA to proliferate instead of entering a senescent 

state. This pathway is crucial as it acts as a natural barrier against cancer 

by stopping the proliferation of cells that have acquired hazardous levels 

of DNA damage (Blackburn, 2005). Alterations in DNA methylation 

patterns are a hallmark of aging and cancer, affecting gene expression 

without altering the DNA sequence. The observed underexpression related 

to DNA methylation processes might indicate an aberrant epigenetic 

landscape, which is critical in the regulation of gene expression and 

maintenance of genomic stability (Jones & Baylin, 2007).  

RNA Polymerase I Promoter Opening is essential for the transcription of 

ribosomal RNA (rRNA), fundamental for ribosome biogenesis and overall 
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protein synthesis. Underexpression in this pathway might suggest a 

compromised capacity for cellular protein synthesis, impacting cell growth 

and proliferation, critical aspects of cancer development and progression. 

Grummt (2003) highlights the complex regulation of RNA Polymerase I, 

underscoring its pivotal role in cellular growth mechanisms, which could 

be disrupted in cancerous tissues (Grummt, 2003). 

The pathways Formation of the cornified envelope and Keratinization were 

significantly overexpressed in age, sex-related comparisons and tissue-sex 

comparisons. The formation of the cornified envelope involves the creation 

of a protective barrier in the outer layer of the skin and other tissues. 

Dysregulation in differentiation processes like cornification can indicate 

broader epithelial changes relevant to cancer biology, including lung 

cancer (Carregaro et al., 2013). Keratinization, the process by which 

keratin proteins form protective layers in epithelial cells, can be a marker 

of epithelial cell dysregulation, a characteristic of many carcinomas, 

including lung cancer (Heryanto & Imoto, 2023). 

Pathways such as Surfactant Metabolism, Diseases Associated with 

Surfactant Metabolism and Defective CSF2RA causes SMDP4 were 

significantly underexpressed for tissue-sex comparisons. Surfactant 

Metabolism is crucial for the proper functioning of lung tissues (Lopez-

Rodriguez et al., 2016). It is a complex mixture of lipids and proteins that 

lines the alveolar epithelium. At the air-liquid interface, the surfactant 

lowers surface tension, avoiding alveolar collapse and reducing the work 

of breathing (Lopez-Rodriguez et al., 2016). Surfactant deficiency can 

result in diseases such as pulmonary alveolar proteinosis (Lopez-

Rodriguez et al., 2016). CSF2RA is a gene that encodes a critical protein 

involved in immune and inflammatory responses. Defects in the CSF2RA 

gene can cause Pulmonary Surfactant Metabolism Dysfunction 4 (SMDP4), 

also known as congenital pulmonary alveolar proteinosis (Whitsett et al., 

2015). This is a rare lung disorder due to impaired surfactant homeostasis 

characterized by alveoli filling with floccular material (Whitsett et al., 
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2015). The connection between defects in CSF2RA and lung cancer is 

unknown. 

 

 

Figure 3.5: Dot Plot of Reactome Pathways for Full Dataset. Displays the top 5 significant 
pathways for various conditions. Symbol sizes indicate odds ratios (ORs), with upward triangles for 
overexpression and downward triangles for underexpression. The color gradient bar represents the 
statistical significance (-log10 p-value).  
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3.3.5 Biological Processes (BP) from Gene Ontology (GO)  

An enrichment analysis of Gene Ontology (GO) Biological Processes (BP) 

was undertaken to investigate the broader biological implications of 

differentially expressed genes identified in the study. Figure 3.6 visually 

maps these associations across various conditions including age, sex, and 

tumor presence. 

The analysis underscored several key biological processes exhibiting 

significant expression patterns. Notably, mitotic processes such as the 

Mitotic Cell Cycle and Mitotic Nuclear Division were markedly 

overexpressed in comparisons between tumor and normal tissues. These 

processes demonstrated exceptionally significant adjusted p-values and 

high odds ratios, suggesting a pronounced role in tumor biology (Long et 

al., 2019). 

Processes like Cell Migration, Cell Motility, and Locomotion were 

significantly underexpressed in comparisons between tumor and normal 

tissues. In the context of lung cancer, it has been observed in mice that 

intrinsic Interleukin (IL)-15 in cancer cells promotes cell motility and 

migration, but exogenous IL-15 inhibits these processes (Hu et al., 2024). 

Overexpression of Regulator of Chromosome Condensation 2 (RCC2) has 

also been linked to enhanced cell motility in lung adenocarcinoma (Pang et 

al., 2017). However, the specific underexpression of these processes in 

lung cancer requires further investigation. It’s important to note that the 

underexpression of these processes could potentially impact the 

metastatic capabilities of the cancer cells, as these processes are crucial 

for tumor progression and spread (Hu et al., 2024; Pang et al., 2017). 

Further research in this area could provide valuable insights into the 

development and progression of lung cancer.  

For a more comprehensive understanding, Appendix A.6 presents a 

detailed table listing enriched biological processes. This appendix includes 

significant findings such as the overexpression of the Immunoglobulin 

Mediated Immune Response and B Cell Mediated Immunity in tumor 
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versus normal comparisons, highlighting these processes as potential 

targets for immune-based therapies. Additionally, Vasculature 

Development was notably underexpressed in tumor versus normal tissue 

comparisons, which might signify compromised vascular processes within 

tumor environments, suggesting its potential as a biomarker for cancer 

progression (Yang et al., 2021). 

Additionally, the study identified significant overexpression of 

developmental processes including Epidermis Development and 

Intermediate Filament Organization in both tissue-sex and age categories. 

This repeated overexpression emphasizes their critical roles in 

physiological adaptations related to aging and sex-specific biological 

differences, highlighting significant regulatory interactions (Sharma et al., 

2019).   

Terms related to the packaging of DNA, such as Nucleosome Assembly, 

Nucleosome Organization and Protein Localization to Chromatin were 

shown to be significantly underexpressed associated with aging. These 

alterations in chromatin structure and function can disrupt the normal 

regulation of gene expression, contributing to cancer development. 

Histone modifications, which play a pivotal role in nucleosome assembly 

and chromatin dynamics, are particularly implicated in this process. 

Changes in these modifications can affect DNA replication, repair, and 

overall genomic stability, which are critical factors in cancer biology 

(Zhang et al., 2023; Prado & Maya, 2017). Furthermore, the aging 

process itself influences these epigenetic modifications, potentially 

increasing the vulnerability to cancer as these regulatory mechanisms 

become less effective. The decoupling of DNA synthesis from nucleosome 

assembly, a phenomenon more frequently observed in aging cells, 

contributes to genomic instability—a key feature in cancer progression 

(Prado & Maya, 2017). 

Terms related to keratinization and skin, such as Keratinization, 

Keratinocyte Differentiation and Epidermis development were shown to be 
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significantly overexpressed associated with aging. These processes are 

essential for the maintenance of skin integrity and are intricately linked to 

the pathophysiological changes observed in Lung Squamous Cell 

Carcinoma (LUSC). For instance, keratinization is a key histopathological 

feature of LUSC, where epithelial cells produce keratin as a protective 

response to external harmful substances. This response is particularly 

critical in lung tissues exposed to carcinogens like tobacco smoke, which is 

a common risk factor for LUSC (Heryanto & Imoto, 2023). Research also 

indicates that proteins like Receptor-Interacting Protein Kinase 4 (RIPK4), 

which are involved in keratinocyte differentiation, play significant roles in 

the carcinogenesis process, particularly in Squamous Cell Carcinomas 

(SCCs), including those of the lung. RIPK4 is implicated in various 

signaling pathways that regulate epidermal homeostasis and 

differentiation, and mutations in this protein have been associated with 

different forms of SCC (Xu et al., 2020).  
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Figure 3.6: Dot Plot of GO Biological Processes for Full Dataset. This plot organizes Gene 
Ontology (GO) Biological Processes along the y-axis, each linked to specific biological conditions 
such as age, sex, and tumor presence. Vertical stacks of symbols illustrate the involvement within 
each condition, with the size of each symbol indicating the odds ratio, reflecting the strength of 
association. The color gradient from purple to red represents the adjusted p-values (-log10), 
highlighting the statistical significance of gene involvement in each condition. 
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To explore the relationships between the overexpressed and 

underexpressed biological processes across multiple contrasts, Directed 

Acyclic Graphs (DAGs) were constructed. A DAG is a graphical tool that 

illustrates the hierarchical relationships between different biological 

processes identified through Gene Ontology (GO) analysis. While DAGs 

were generated for various contrasts, Figure 3.7 shows a representative 

DAG for the overexpressed TumorVsNormal contrast. This DAG provides a 

structured visualization of how the dysregulated processes in tumor 

samples, compared to normal tissue, are interconnected within a network 

of biological processes. Each node in the DAG represents a GO term, with 

arrows indicating parent-child relationships that move from more specific 

to more general terms.  Key details of the nodes include the GO Term ID, 

level (L), depth (D), and descendant count (d). 

The DAG contains three main branches. The left branch contains nodes 

related to organization within the cell and more specifically nuclear 

division. The middle branch is the shortest, only containing the cell cycle 

and more specifically the mitotic cell cycle. The right branch also deals 

with the cell cycle, but rather with the cell cycle process and the mitotic 

cell cycle process. The DAG demonstrates that many significant GO 

Biological Process terms are related, forming a network of interconnected 

processes. An example of the connectivity within the DAG can be seen 

with the term Cell Cycle Process (GO:0022402), which connects to the 

more specific processes Mitotic Cell Cycle Process (GO:1903047) and 

Mitotic Nuclear Division (GO:140014). This indicates a functional 

progression from broad to specific cell cycle processes, underscoring the 

interrelatedness of these biological processes. 
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Figure 3.7: Directed Acyclic Graph (DAG) illustrating the top four most significant 
Biological Process Gene Ontology (GO:Biological Process) results for the overexpressed 
TumorVsNormal contrast. The arrows in the DAG point from child to parent, denoting a 
progression from more specific to more general terms. This visualization highlights the hierarchical 
relationships and biological pathways involved, emphasizing the interconnectivity and shared 
biological functions relevant to the overexpressed TumorVsNormal contrast. The yellow node is the 
most significant result, the light blue second most significant, the orange third most significant and 
the light green fourth most significant. The light red nodes represent remaining nodes in the DAG 
that are found to be significant GO:Biological Process results for the overexpressed TumorVsNormal 
contrast, but are not among the top four most significant. The white nodes are GO:BP results that 
are not found to be significant for the overexpressed TumorVsNormal contrast, but are part of the 
hierarchical structure of the DAG. Each of the nodes contain a unique GO ID, level (L) indicating 
the minimum path from the top root, depth (D) indicating the maximum path from the top root 
term and descendant count (d) indicating the total number of GO terms below the given node from 
the GO hierarchy structure (not shown in this DAG, but a part of the underlying Open Biological 
and Biomedical Ontologies file) (Klopfenstein et al., 2018). The letters A, B and C at the second 
most top nodes represent aliases for depth-01 GO terms, used to provide the general location in 
the GO DAG of any GO term. They stand for cellular process, biological regulation and metabolic 
process, respectively (Klopfenstein et al., 2018). 
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3.3.6 Cellular Components (CC) from Gene Ontology (GO)  

The Gene Ontology (GO) Cellular Components (CC) enrichment analysis 

was conducted to assess the broader biological implications of 

differentially expressed genes within this study. Figure 3.8 visually 

illustrates these associations across varying conditions such as age, sex-

specific tissues, and the presence of tumors. 

The analysis demonstrated significant differences in the expression of 

cellular components when comparing tumor tissues to normal tissues. 

Notably, components such as the immunoglobulin complex, extracellular 

region, extracellular space, extracellular exosome, and extracellular 

vesicle were markedly overexpressed in tumors. The immunoglobulin 

complex, which exhibited the highest adjusted p-value and an odds ratio 

of 103, was identified as particularly significant, indicating its crucial role 

in tumor biology and its potential as a therapeutic target. 

In contrast, components including the cell periphery, plasma membrane, 

cell surface, extracellular region, and collagen-containing extracellular 

matrix were found to be underexpressed in tumors compared to normal 

tissues. These components showed lower odds ratios, suggesting a 

diminished presence in tumor tissues, which may provide insights into the 

structural and functional alterations occurring within the tumor 

microenvironment. 

In the category of sex-specific tissues, components such as the cornified 

envelope, keratin filament, intermediate filament, intermediate filament 

cytoskeleton, and desmosome showed significant overexpression. The 

cornified envelope, in particular, displayed an exceptionally high odds ratio 

of 706, underscoring its critical role in gene expression related to sex 

differences. 

Conversely, the underexpressed sex-specific tissue category included 

components such as the lamellar body, multivesicular body, alveolar 

lamellar body, multivesicular body lumen, and vesicle. Notably, the 
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lamellar body and alveolar lamellar body exhibited very high odds ratios of 

1308 and 1413, respectively, highlighting the distinct associations of these 

components with sex-specific tissue differences. 

Regarding age-related changes, overexpression was observed in 

extracellular components such as the extracellular space and extracellular 

region, alongside the immunoglobulin complex and circulating 

immunoglobulin complex, and the cornified envelope. These components' 

enhanced expression suggests their involvement in physiological 

processes associated with aging. 

In the age category with underexpressed components, the nucleosome, 

nucleolus, CENP-A containing chromatin, CENP-A containing nucleosome, 

and chromosome centromeric core domain were notably underexpressed. 

These components, which displayed high odds ratios, are indicative of 

their reduced presence, emphasizing their potential roles in age-related 

gene expression changes. 

This comprehensive analysis of cellular components and their expression 

across various conditions offers valuable insights into the complex 

regulatory mechanisms associated with different cellular components. By 

elucidating significant associations and expression patterns, the study 

contributes to a deeper understanding of the biological processes involved 

in aging, sex-specific differences, and tumor biology. 
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Figure 3.8: Dot Plot of GO Cellular Components for Full Dataset. This plot show Gene 
Ontology (GO) Cellular Components associated with age, sex-specific tissues, and tumor presence.  
Symbols represent odds ratios (OR), with size indicating the magnitude of the OR. Upward-pointing 
triangles denote overexpressed genes, while downward-pointing triangles indicate underexpressed 
genes. The color gradient from purple to red represents adjusted p-values (-log10), with red 
marking the most statistically significant findings. 
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3.3.7 Molecular Functions (MF) from Gene Ontology (GO)  

The Gene Ontology (GO) Molecular Functions (MF) enrichment analysis 

elucidated the roles of differentially expressed genes in lung cancer, 

focusing on the impact of variables such as age, sex, and tumor presence. 

Visual representation of these associations is provided in Figure 3.9, which 

highlights the molecular functions implicated in various clinical scenarios. 

The analysis comparing tumor tissues to normal tissues revealed 

significant overexpression of molecular functions, including antigen 

binding, cell adhesion molecule binding, and protein binding. The 

molecular function of antigen binding, notable for having the most 

significant adjusted p-value and an odds ratio of 56, is essential for 

immune recognition. The prominent role of this function in tumor biology 

highlights its potential as a therapeutic target, especially for strategies 

aimed at enhancing the immune response in cancer immunotherapy. 

Additionally, the overexpression of cell adhesion molecule binding is 

significant as these molecules facilitate not only cell-cell and cell-matrix 

interactions but also modulate the signaling pathways that drive tumor 

progression. Understanding these functions is crucial for comprehending 

the invasive capacity of cancer cells, offering potential targets to inhibit 

metastasis (Harjunpää et al., 2019; Mrozik et al., 2018; Neophytou, 

2021). 

Conversely, molecular functions such as signaling receptor binding and 

integrin binding were found to be underexpressed in tumors, suggesting a 

suppression of specific cellular signaling and regulatory mechanisms within 

the tumor microenvironment. This suppression may contribute to the 

pathological state of cancer cells. 

We found significant overexpression in male versus female samples, such 

as histone H3 demethylase activity, histone demethylase activity, protein 

demethylase activity, general demethylase activity, and 2-oxoglutarate-

dependent dioxygenase activity. These findings suggest that 
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demethylation processes, especially those involving histone modifications, 

are more pronounced in males, potentially influencing gene expression 

regulation and contributing to sex differences in disease susceptibility and 

progression. 

Analysis of sex-specific tissues revealed high overexpression of molecular 

functions like indanol dehydrogenase activity and phenanthrene 9,10-

monooxygenase activity, indicating their significant roles in sex-related 

biological processes. These findings imply that sex differences might 

influence specific metabolic pathways, which are differentially activated in 

lung cancer. 

The study also highlighted functions associated with age-related changes. 

Functions such as structural molecule activity and immunoglobulin 

receptor binding were predominantly overexpressed in older individuals, 

likely involved in physiological or pathological processes associated with 

aging. In contrast, functions like structural constituent of chromatin and 

nucleic acid binding were underexpressed, suggesting a decrease in 

genomic stability and transcriptional activity with age. 

The upregulation of structural constituents of skin epidermis, such as 

keratins, in tumors relative to normal tissues suggests an epithelial-to-

mesenchymal transition (EMT). This process is pivotal for cancer 

progression, providing epithelial cells with mesenchymal features that 

enhance their motility and invasiveness, a process elaborated on by 

Neophytou (2021). Interestingly, this upregulation also correlates with 

age and is discernible in tissues specific to different sexes, underscoring 

the complex interplay of various factors in cancer development and 

progression. 

Our study observed both upregulation and downregulation of structural 

molecule activity, reflecting the complex nature of cancer and aging 

processes. The adjusted p-values indicate that downregulation is much 

more pronounced than upregulation. This duality might reflect a balance 
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between protective adaptations and detrimental changes in cellular 

structures, highlighting the intricate interplay of molecular functions in 

lung cancer's pathology. 

This enriched understanding of molecular functions through GO analysis 

underscores the complex interplay of genetic expressions influenced by 

demographic and pathological factors, offering pathways for targeted 

therapeutic interventions and deepening the comprehension of lung 

cancer biology. 
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Figure 3.9: Dot Plot of GO Molecular Functions for Full Dataset. The dot plot shows Gene 
Ontology (GO) Molecular Functions associated with age, gender, sex-specific tissues, and tumor 
presence. Upward-pointing triangles denote overexpressed genes, while downward-pointing 
triangles indicate underexpressed genes. Larger symbols indicate higher odds ratios (OR), while a 
color gradient from purple to red represents the significance of p-values (-log10 scale). 
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3.3.8 Validation of Differential Gene Expression Between Male 

and Female Samples in Full Dataset 

In the course of ensuring the reliability of our regression results, a sanity 

check was performed by verifying the differential expression of genes 

between male and female samples for the full dataset. The dataset 

underwent a filtration process to include only those genes previously 

analyzed in the MaleVsFemale regression study. A meticulous search was 

conducted to match these genes against established lists of identifiers 

known to differentiate male from female gene expressions. 

The differential expression of selected genes between male and female 

samples was documented as follows. Genes such as DDX3Y, and ZFY, 

among others, showed higher expression levels in male samples, 

indicative of overexpression, whereas genes like XIST exhibited 

underexpression in the same group, as can be seen in Table 3.2. The 

observed expression levels for each gene are supported by a 

comprehensive statistical analysis noting significant differences in 

expression levels, as evidenced by log fold change values and adjusted p-

values, some of which reached levels described as infinite due to their 

extremity. 

The roles of these genes in sex-specific biological processes are well-

documented, thereby making them reliable markers for gender-specific 

expression patterns. For instance, the gene DDX3Y, which is known for its 

role in RNA helicase activity critical for RNA processing, exhibited a log 

fold change of 4.90, indicating significant overexpression in males—a 

finding that is consistent with its essential role in spermatogenesis 

(Lardone et al., 2007). Similarly, ZFY, a gene involved in sex 

determination and differentiation, also displayed significant 

overexpression in male samples with a log fold change of 3.03, 

underscoring the robustness of these findings (Page et al., 1987). 
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Conversely, the gene XIST, a long non-coding RNA responsible for X-

chromosome inactivation, is typically underexpressed in males who 

possess only one X chromosome and thereby do not undergo X-

chromosome inactivation (Brown et al., 1991). This underexpression was 

quantified with a log fold change of -3.88, reinforcing the reliability of the 

observed expression patterns due to its biological functions. 

Further analysis extended to other sex-specific genes located on the Y 

chromosome, such as RPS4Y1, USP9Y, UTY, TXLNG2P, and PRKY, all of 

which were overexpressed in males. This overexpression aligns with their 

chromosomal location and specific roles in male biological processes such 

as protein synthesis, spermatogenesis, and epigenetic regulation (Bellott 

et al., 2014). 

 

Table 3.2: Differential expression of genes between male and female samples for the full dataset 

Ensembl ID 

Gene 

Name Expr logFC 

Ave 

Expr t 

adj.P.Val  

(-log10) 

ENSG00000129824 RPS4Y1 Over 6.70 4.83 69.17 infinite 

ENSG00000067048 DDX3Y Over 4.90 3.41 56.91 infinite 

ENSG00000067646 ZFY Over 3.03 2.29 46.63 311.08 

ENSG00000229807 XIST Under -3.88 2.02 -43.01 277.37 

ENSG00000114374 USP9Y Over 3.04 2.27 39.26 242.25 

ENSG00000183878 UTY Over 3.52 2.48 39.03 240.13 

ENSG00000131002 TXLNG2P Over 3.16 2.38 37.63 227.13 

ENSG00000099725 PRKY Over 2.61 2.13 35.57 208.15 

 

This comprehensive validation of differential expression across gender-

specific genes confirms the robustness of our dataset and the statistical 

analyses employed. The high level of statistical significance associated 

with these findings supports their validity and confirms the anticipated 
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biological roles of these genes within the context of sex-specific genetic 

research. These results not only substantiate the integrity of our analytical 

procedures but also enhance the foundational knowledge necessary for 

further investigations into the genetic determinants of sex-based 

differences in biological traits and diseases. 

 

3.3.9 Comprehensive Analysis of Gene Expression in Human 

Protein Atlas (HPA) Tissues using Full Dataset 

The Human Protein Atlas (HPA) provides an invaluable resource for 

examining the distribution and expression levels of proteins across various 

human tissues. Understanding these variations is critical for uncovering 

the underlying biological mechanisms and their implications for health and 

disease. This section presents a comprehensive analysis of gene 

expression variations across different tissue types using HPA data. The 

primary aim is to explore how gene expression is influenced by age, sex-

specific differences, and tumor presence, thereby identifying significant 

patterns and associations, as shown in Figure 3.10. 

The analysis reveals several key findings. Comparisons between tumor 

and normal tissues provide critical insights into tumor biology. 

Overexpressed genes in tumor tissues are prominently observed in the 

esophagus, reflecting active roles in tumor development and progression. 

On the other hand, significant underexpression in tissues like the lung 

suggests a loss of function during tumorigenesis, contributing to the 

altered cellular environment in tumors. The two most significant tissue in 

the dot plot is esophagus and lung, which might be explained by a 

significant overlap in the gene expression profiles of developing 

esophageal and lung tissues (Morrisey & Rustgi, 2018).  

Age-related gene expression changes are evident in various tissues. For 

example, the esophagus exhibits significant age-related overexpression 

with high odds ratios, suggesting enhanced metabolic activity or stress 



 
  96 

responses in this tissue as age advances. In contrast, the lymphoid tissue 

and bone marrow display marked underexpression, indicative of possible 

degenerative changes or reduced cellular functions typical of aging 

tissues. Studies have shown a decline in the functionality and gene 

expression in bone marrow with age, linked with a reduction in 

hematopoietic activity and an increase in adiposity, reflecting a shift from 

a regenerative to a more degenerative state in the tissue (Liu et al., 

2011). Similarly, the production of B cells in bone marrow is significantly 

decreased in aged organisms, attributed to changes in the 

microenvironment that unfavorably affect survival signals and cellular 

dynamics necessary for effective hematopoiesis (de Mol et al., 2021). 

Sex-specific differences in gene expression are also observed. 

Overexpression is significant in sex-specific tissues such as the 

esophagus, urinary bladder and skin. Conversely, underexpression is only 

noted in the lung, highlighting differential regulatory mechanisms that 

may be at play between males and females. 

This analysis illuminates the complex regulatory mechanisms underlying 

tissue-specific gene expression and highlights potential targets for 

therapeutic intervention, particularly in age-related diseases and cancer. 

Overexpressed genes in aging tissues may reflect compensatory 

mechanisms or increased demand for specific functions, while 

underexpressed genes could indicate declines in critical pathways or 

cellular functions. Understanding sex-specific differences in gene 

expression is crucial for developing gender-specific treatments and 

interventions. 
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Figure 3.10: Dot Plot of Differential Gene Expression Analysis in Tissues for Full Dataset. 
This visualization illustrates the odds ratios (OR) for gene expression, where upward-pointing 
triangles indicate overexpression and downward-pointing triangles represent underexpression. The 
size of each symbol correlates with the odds ratio. The accompanying color gradient denotes the 
adjusted p-value (-log10), highlighting the statistical significance of each gene's differential 
expression across various tissues. 
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3.3.10 Comprehensive Analysis of Gene Expression in 

Numerical HPA Cell Types using Full Dataset 

The Human Protein Atlas (HPA) is a crucial resource that allows for the 

examination of the distribution and expression levels of proteins across 

various human cell types. Understanding these variations is fundamental 

to uncovering the underlying biological mechanisms and their implications 

for health and disease. This section presents a detailed analysis of gene 

expression variations across different cell types using numerical HPA data, 

focusing on how gene expression is influenced by age, sex-specific 

differences, and tumor presence, as shown in Figure 3.11. 

The analysis reveals several key findings across different conditions. 

Comparisons between tumor and normal cell types provide critical insights 

into tumor biology. Overexpressed genes in tumor cell types, such as 

extravillous trophoblasts, plasma cells, and suprabasal keratinocytes, 

reflect active roles in tumor development and progression. These genes 

may contribute to the uncontrolled proliferation, invasion, and metastasis 

characteristic of cancer cells. Conversely, underexpressed genes in 

adipocytes, endothelial cells, and monocytes suggest a loss of function 

during tumorigenesis, highlighting the complex interplay between 

oncogenic signals and the cellular environment. 

Significant age-related overexpression is observed in various cell types, 

such as basal keratinocytes, suprabasal keratinocytes and basal squamous 

epithelial cells, with high odds ratios indicating enhanced metabolic 

activity or stress responses in these cells as age advances. This suggests 

that aging may lead to increased metabolic activity or stress responses in 

these cells, reflecting an attempt to counteract age-related declines in 

function or increased exposure to damaging agents over time. Conversely, 

age-related underexpression in cell types such as plasma cells and 

erythroid cells highlights potential degenerative changes or reduced 

cellular functions typical of aging tissues. 
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Sex-specific differences in gene expression are also observed. For 

example, the overexpressed genes in basal keratinocytes, suprabasal 

keratinocytes and basal squamous epithelial cells (the same cell types as 

for age-related overexpression). 

Alveolar cells, type 1 and type 2, are crucial for lung function by 

facilitating gas exchange and producing surfactant. Analysis of numerical 

HPA gene expression data reveals significant underexpression of these 

cells in tissue and sex interactions and in tumor versus normal tissue 

comparisons. This underexpression suggests reduced functional capacity, 

likely due to degenerative changes or impaired repair mechanisms 

associated with sex differences and cancer. Studies on alveolar cell 

differentiation and function underscore the importance of these cells in 

maintaining lung integrity and their role in surfactant production, which is 

crucial for lung function and defense mechanisms. The observed 

underexpression in conditions like cancer significantly impacts these roles, 

leading to compromised lung function by disrupting gas exchange and 

surfactant production capabilities (Zhou et al., 2021; Zhang et al., 2022). 

This analysis elucidates the complex regulatory mechanisms underlying 

cell type-specific gene expression and identifies potential targets for 

therapeutic intervention, particularly in age-related diseases and cancer. 

Overexpressed genes in aging cell types may reflect compensatory 

mechanisms or increased demand for specific functions, while 

underexpressed genes could indicate declines in critical pathways or 

cellular functions. Understanding sex-specific differences in gene 

expression is crucial for developing gender-specific treatments and 

interventions.  
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Figure 3.11: Dot Plot of Top 20 differential gene expression analysis in cell types for the 
full dataset with over- and underexpression. The triangles indicate over- or underexpression. 
Triangles pointing upward represent overexpression, while those pointing downward represent 
underexpression. Each triangle is color-coded according to a scale that represents -log10(p-value), 
indicating the statistical significance of the over- or underexpression. 
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3.4 Gene Expression Analysis Related to Smoking 

In this section, we investigate the genetic influences of smoking on lung 

cancer using data from The Cancer Genome Atlas (TCGA). The primary 

focus is to analyze cell-type specific gene expressions within lung cancer 

tissues to elucidate the complex interactions between smoking-related 

genetic factors and the disease. 

Mirroring the structure of chapter 3.3, we begin with a statistical overview 

of the dataset, employing an UpSet plot to depict the distribution and 

interconnectivity of significant gene clusters. This visualization highlights 

the differential gene expression patterns influenced by smoking, 

showcasing the balance between overexpressed and underexpressed 

genes. 

Subsequently, we explore marker genes from the Human Protein Atlas 

(HPA) and Human Ensemble Cell Atlas (hECA). These marker genes are 

critical in identifying cell types that exhibit significant differential 

expression related to smoking. Analyzing these genes provides insights 

into the cellular composition of lung cancer tissues, enhancing our 

understanding of the molecular impacts of smoking. 

Reactome pathway analysis is conducted to map the significant gene 

clusters to biological pathways, providing a deeper understanding of the 

functional implications of the observed gene expression changes due to 

smoking. This analysis is complemented by Gene Ontology (GO) 

classifications, which further categorize significant genes into biological 

processes, cellular components, and molecular functions. 

A Directed Acyclic Graph (DAG) is utilized to visualize the hierarchical 

relationships and biological pathways, emphasizing the interconnectivity 

and shared functions relevant to smoking-related lung cancer. This 

graphical representation aids in identifying key pathways and their roles in 

disease progression. 
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To ensure the robustness of our findings, a sanity check is performed, 

validating the consistency and reliability of the differential gene expression 

results. This step is crucial for confirming the accuracy of our 

computational analyses. 

Additionally, we generate dot plots of differential gene expression in both 

tissues and cell types. These plots display the odds ratios and adjusted p-

values, highlighting the statistical significance of gene expression across 

various conditions influenced by smoking.  

Finally, we look specifically at qualitative marker genes from hECA and 

HPA that are shared with numerical marker genes from HPA, highlighting 

marker genes that are found across multiple sources. 

 

3.4.1 Lung Cancer Smoking Dataset Statistics 

This section provides a comprehensive overview of the demographic and 

clinical characteristics of the lung cancer dataset obtained from The 

Cancer Genome Atlas (TCGA). This dataset includes detailed information 

on gender distribution, age statistics, and other relevant clinical variables, 

forming a robust foundation for subsequent genomic analyses. 

The dataset comprises 442 lung cancer cases, with 290 males and 152 

females. The mean age for males is 64.57 years (SD = 9.19), while for 

females it is 63.97 years (SD = 9.80). The age at diagnosis for the overall 

cohort shows a mean of approximately 64.37 years and a median of 

approximately 65.27 years. Additionally, the metadata includes 

comprehensive records for a total of 741 samples, providing a broad base 

for in-depth analysis of lung cancer. This extensive dataset supports a 

detailed exploration of the molecular mechanisms underlying the disease, 

considering both demographic and clinical variables. 

The demographic statistics is further broken down for each smoking 

category in Table 3.3 showing the total number of cases, along with the 



 
  103 

gender distribution and the mean age of males and females for each 

smoking category. It also includes the standard deviation (SD) of age for 

each group. Figure 3.12 show a bar chart of age distribution for each 

smoking category.   
 

Table 3.3: This table presents the total number of cases, along with the gender distribution and 
the mean age of males and females for each smoking category. It also includes the standard 
deviation (SD) of age for each group. 

Smoking 
Category 

Total 
Cases Males Females 

Mean 
Age 
Males 
(years) 

SD 
Age 
Males 

Mean 
Age 
Females 
(years) 

SD Age 
Females 

Never 126 64 62 61.97 10.64 61.31 10.31 

Reformed 179 122 57 68.63 8.11 67.66 8.06 
Current 137 104 33 62.23 7.84 62.43 9.66 

 

 
Figure 3.12: The bar chart illustrates the number of cases categorized by age group and 
smoking status. Age groups are represented on the x-axis, ranging from 'Under 30' to 'Over 90', 
while the number of cases is depicted on the y-axis. The chart differentiates between three 
smoking categories: Never (yellow), Reformed (orange), and Current (red). 
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3.4.2 Differentially expressed genes of the Smoking Dataset  

The UpSet plot in Figure 3.13 provides a comprehensive visualization of 

the distribution and interconnectivity of significant gene clusters based on 

their differential expression in the lung cancer dataset. This plot is 

essential for elucidating the complex relationships among gene clusters, 

particularly concerning overexpression and underexpression across 

different conditions. 

The UpSet plot employs color coding to distinguish between 

underexpressed and overexpressed genes: red indicates underexpressed 

genes, while green signifies overexpressed genes. The left histogram 

categorizes gene clusters by size, displaying the number of elements in 

each cluster. The accompanying bar chart at the top quantifies the 

elements per cluster, emphasizing the balance between overexpressed 

and underexpressed genes. 

A detailed examination of the dataset reveals several key findings. In the 

Tumor vs. Normal expression patterns, there are 671 genes significantly 

overexpressed in tumor tissues compared to normal tissues 

(TumorVsNormal_up), contributing significantly to the dataset's 

interconnectivity. In contrast, TumorVsNormal_down includes 2161 genes 

significantly underexpressed in tumor tissues compared to normal tissues. 

Regarding age-related expression patterns, the analysis identified 15 

genes significantly overexpressed in relation to age (Age_up) and one 

gene significantly underexpressed (Age_down). 

The FormerVsNever_Tumor_up condition has six significant genes and in 

former smokers compared to never smokers in tumor tissues 

(FormerVsNever_Tumor_down) there are 10 significantly underexpressed 

genes, suggesting potential long-term effects of smoking cessation. The 

CurrentVsNever_Tumor_down condition, with 19 genes significantly 

underexpressed, reflects the impact of smoking on gene expression in 

tumor tissues. This condition intersects with the TumorVsNormal_down 
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condition, indicating shared pathways of gene underexpression in these 

contexts.  

 

 

Figure 3.13: UpSet Plot of Significant Gene Clusters for Smoking Dataset. This plot 
illustrates the distribution and interconnectivity of significant gene clusters based on differential 
expression—red indicating underexpressed and green signifying overexpressed genes. The left 
histogram categorizes clusters by size, while the network diagram displays their relationships. The 
top bar chart quantifies the elements per cluster, highlighting the balance between overexpressed 
and underexpressed genes. The plot emphasizes distinct expression patterns in tumor versus 
normal tissues and age-related changes, showcasing intricate relationships among gene clusters. 

  



 
  106 

3.4.3 Differential Expression Analysis of Marker Genes for 

Smoking Dataset 

The differential expression analysis of qualitative marker genes from the 

Human Protein Atlas (HPA) and the Human Ensembl Cell Atlas (hECA) 

identifies significant variations in gene expressions, classified as either 

overexpressed or underexpressed. Figure 3.14 presents a comparative 

analysis of marker genes across various conditions. 

The study covers age-related changes, tissue-specific expressions 

influenced by sex, and comparisons between tumor and normal tissues. 

Bronchial epithelium basal cells exhibit highly significant p-values in tumor 

versus normal tissue comparisons, highlighting their crucial role in tumor 

biology and potential as markers for cancer progression. These cells are 

overexpressed in TumorVsNormal conditions for HPA, underscoring their 

importance in lung cancer development and progression. Research has 

shown that the bronchial epithelium's response to factors like TGF-β1, 

which is involved in epithelial-mesenchymal transition, further emphasizes 

their dynamic role in cancerous transformations and their potential utility 

as therapeutic targets in oncology (Paw et al., 2021). Similarly, fibroblasts 

display significant p-values in TumorVsNormal_hECA_down and 

TumorVsNormal_hECA_up conditions, indicating their involvement in both 

tumor suppression and promotion. This underscores the importance of 

fibroblasts in the tumor microenvironment. 

Alveolar cells type 2 show significant underexpression in the 

TumorVsNormal condition for hECA, underscoring their sensitivity to 

tumor-related changes and their potential impact on lung cancer 

progression. Among the top cell types by p-value, goblet cells 

demonstrate the highest p-value in the TumorVsNormal_hECA_up 

condition, suggesting substantial changes in gene expression related to 

tumor presence. Endothelial cells represent the top cell type by p-value 

for the TumorVsNormal_hECA_down contrast, as well as for the entire dot 

plot as a whole, indicating their significant downregulation in the smoking 
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dataset and highlighting their potential role in the differential expression 

patterns observed between tumor and normal samples. Studies have 

demonstrated that endothelial cells are crucial in the tumor 

microenvironment, influencing both tumor growth and the immune 

response. They regulate blood flow, control the permeability of blood 

vessels, and interact with immune cells, making them central to the 

dynamics of cancer progression and the response to therapy (Leone et al., 

2024). The influence of smoking on endothelial cells, particularly in how it 

affects their function and viability, further highlights the complexities of 

their role in cancer. Smoking has been shown to induce apoptosis in 

pulmonary vascular endothelial cells, contributing to diseases such as 

chronic obstructive pulmonary disease (COPD), which shares some 

pathological features with lung cancer, indicating a broader impact of 

smoking on endothelial dysfunction (Song et al., 2021). 

Vascular endothelial cells exhibit significant changes in the 

TumorVsNormal_hECA_down condition, indicating their involvement in the 

vascular alterations associated with tumors. Neutrophilic granulocytes are 

significant in the TumorVsNormal_hECA_down condition, pointing to their 

role in the immune cell response to tumors. Basal keratinocytes and 

bronchial epithelium basal cells are significant in the 

TumorVsNormal_HPA_up condition, suggesting their potential as markers 

for tumor progression. Pericytes, significant in the 

TumorVsNormal_hECA_down condition, highlight their role in the tumor 

microenvironment and vascular changes. 

In terms of age-related changes, mast cells are significantly 

overexpressed in the Age_hECA_up condition, indicating their role in 

immune response modulation and their potential impact on aging 

processes. Research shows that mast cells, which are integral to immune 

and allergic responses, can influence age-related conditions like macular 

degeneration by affecting inflammatory and oxidative stress pathways 

(Malih et al., 2024). B cells, significant in the Age_hECA_up condition, 
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emphasize their involvement in the adaptive immune response and their 

potential impact on aging. 

Alveolar cells type 2 consistently show underexpression in the TissueXSex 

condition for both hECA and HPA, highlighting their sensitivity to various 

biological influences, including sex-specific factors and tissue-specific 

changes. Fibroblasts display significant p-values in multiple conditions, 

underscoring their influence on cancer progression and their role in the 

tumor microenvironment. 
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Figure 3.14: Dot Plot for smoking dataset displaying differential expression of marker 
genes in cell types from the Human Protein Atlas (HPA) and Human Ensemble Cell Atlas 
(hECA). Symbol sizes indicate odds ratios (ORs), with direction denoting overexpression (upward 
triangles) and underexpression (downward triangles). The color gradient bar shows the statistical 
significance (-log10 p-value). 
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3.4.4 Reactome Pathway Analysis using Smoking Dataset 

A comprehensive analysis using the Reactome Pathway database was 

conducted to identify significant pathways associated with differentially 

expressed genes in lung cancer. This analysis focused particularly on 

variations resulting from tumor versus normal tissue comparisons and 

differences influenced by smoking status, age, and sex. Figure 3.15 

presents a detailed comparative analysis, visually demonstrating how 

these conditions affect gene expression. 

The analysis revealed several key findings. In tumor versus normal tissue 

comparisons, pathways associated with the cell cycle, including Cell Cycle 

and Cell Cycle, Mitotic, are highly significant. These pathways are 

predominantly overexpressed in tumor conditions, suggesting their crucial 

role in the progression of lung cancer. The genes involved in these 

pathways have potential as biomarkers for detecting and monitoring the 

disease. Pathways related to the immune system, such as Classical 

antibody-mediated complement activation and FCGR activation, also 

showed significant overexpression. This suggests an active role in tumor 

immunity and inflammation processes within the tumor microenvironment. 

The classical antibody-mediated complement activation pathway involves 

the activation of the complement system via antibodies, crucial for 

immune responses. Overactivation can lead to chronic inflammation, 

promoting a microenvironment conducive to tumor development and 

progression. Research underscores that the complement system, through 

components like C5a, can stimulate various cellular responses that 

enhance tumor progression. Activation of C5a, for instance, can lead to 

increased inflammation and promote tumor growth by affecting cellular 

functions such as migration and metastasis formation. Additionally, the 

dysregulation of this pathway is linked to adverse effects in the tumor 

microenvironment, potentially contributing to carcinogenesis by modifying 

cellular behavior and immune cell interactions (Netti et al., 2021; Zhang 

et al., 2019). FCGRs play a role in antibody-mediated immune responses, 
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influencing immune responses to cancer cells with potential roles in 

immune evasion and tumor progression. CD22 mediated BCR regulation, a 

pathway that regulates BCR signaling essential for B-cell function, is also 

noteworthy. Dysregulated BCR signaling can support abnormal B-cell 

activation and immune evasion mechanisms in lung cancer (Zhang et al., 

2023). 

In age-related comparisons, the top pathways identified as overexpressed 

are CD22 Mediated BCR Regulation, Regulation of Complement Cascade, 

Complement Cascade, Classical Antibody-Mediated Complement 

Activation, and FCGR Activation. The CD22 mediated BCR regulation 

pathway is crucial for B-cell function, and its dysregulation can lead to 

abnormal B-cell activation, contributing to cancer cell proliferation and 

immune evasion in lung cancer. The Regulation of Complement Cascade 

and Complement Cascade pathways play essential roles in immune 

response, promoting inflammation and cell lysis. Abnormal complement 

activity can lead to chronic inflammation, a condition linked to cancer 

development and progression, including in lung cancer. Classical antibody-

mediated complement activation enhances immune defense mechanisms, 

and its overactivation can contribute to chronic inflammation and immune 

modulation, factors associated with lung cancer progression (Kharghan, 

2017). FCGR activation modulates immune responses against tumors, and 

its abnormal activation can lead to immune evasion by cancer cells and 

support tumor growth. 

For pathways that are significantly underexpressed in older age groups, 

the top pathways identified are Scavenging of Heme from Plasma and 

Binding and Uptake of Ligands by Scavenger Receptors. The Scavenging 

of Heme from Plasma pathway involves the clearance of free heme from 

the blood, preventing oxidative damage and maintaining iron 

homeostasis. Heme metabolism is linked to oxidative stress, which can 

promote cancer development (Chiang et al., 2021). Abnormal heme 

scavenging might contribute to the oxidative environment that supports 
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lung cancer progression. The Binding and Uptake of Ligands by Scavenger 

Receptors pathway involves scavenger receptors on immune cells binding 

and internalizing various ligands, including modified lipoproteins and 

apoptotic cells (Zani et al., 2015). Dysregulation in scavenger receptor 

pathways can affect inflammation and immune responses, potentially 

promoting a tumor-supportive microenvironment in the lungs. 

There are notable overlaps between pathways identified in 

TumorVsNormal_up and Age_up conditions. Both conditions highlight the 

significance of pathways such as CD22 mediated BCR regulation, 

Regulation of Complement cascade, Complement cascade, Classical 

antibody-mediated complement activation, and FCGR activation. The 

CD22 mediated BCR regulation pathway is crucial for B-cell function, and 

its dysregulation can lead to abnormal B-cell activation, contributing to 

cancer cell proliferation and immune evasion in lung cancer. The 

Regulation of Complement cascade and Complement cascade pathways 

play essential roles in immune response, promoting inflammation and cell 

lysis. Abnormal complement activity can lead to chronic inflammation, a 

condition linked to cancer development and progression, including in lung 

cancer (Dominguez et al., 2021). Classical antibody-mediated complement 

activation enhances immune defense mechanisms, and its overactivation 

can contribute to chronic inflammation and immune modulation, factors 

associated with lung cancer progression. FCGR activation modulates 

immune responses against tumors, and its abnormal activation can lead to 

immune evasion by cancer cells and support tumor growth. 

Sex-related comparisons revealed substantial differential expression in 

pathways such as Formation of the anterior neural plate and Formation of 

the posterior neural plate, indicating a sensitivity to biological variables 

like sex which could impact tissue architecture and influence the dynamics 

of the tumor microenvironment. The pathway HDMs demethylate histones 

was significantly overexpressed in male versus female comparisons, 
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suggesting sex-specific epigenetic modifications that might contribute to 

lung cancer susceptibility and progression. 

In comparisons involving smoking status, particularly current versus 

former smokers, pathways like PPARA activates gene expression and 

Regulation of lipid metabolism by PPARalpha were significantly 

upregulated in current smokers. This points to ongoing inflammatory and 

metabolic dysregulation due to smoking, which could exacerbate lung 

cancer risk. In current versus never smokers, pathways such as 

Keratinization and Formation of the cornified envelope were prominent, 

suggesting changes  in epithelial cell differentiation and barrier function 

that may facilitate cancer development. The formation of the cornified 

envelope involves the creation of a protective barrier in the outer layer of 

the skin and other tissues. Dysregulation in differentiation processes like 

cornification can indicate broader epithelial changes relevant to cancer 

biology, including lung cancer (Carregaro et al., 2013). Keratinization, the 

process by which keratin proteins form protective layers in epithelial cells, 

can be a marker of epithelial cell dysregulation, a characteristic of many 

carcinomas, including lung cancer (Heryanto & Imoto, 2023).  
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Figure 3.15: Dot Plot of Reactome Pathways for Smoking Dataset. Displays the top 5 for 
Age_up and TumorVsNormal_up conditions and top 2 significant pathways for the remaining 
conditions. Symbol sizes indicate odds ratios (ORs), with upward triangles for overexpression and 
downward triangles for underexpression. The color gradient bar represents the statistical 
significance (-log10 p-value).  
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3.4.5 Biological Processes (BP) from Gene Ontology (GO)  

An enrichment analysis of Gene Ontology (GO) Biological Processes (BP) 

was undertaken to investigate the broader biological implications of 

differentially expressed genes identified in the study. Figure 3.16 visually 

maps these associations across various conditions, including comparisons 

between current and former smokers (Normal tissue), current and never 

smokers (Tumor tissue), former and never smokers (Tumor tissue), age-

related differences, and tumor versus normal tissue comparisons. 

In the comparison between current and former smokers (Normal) where 

genes are overexpressed, the metabolism of insecticides, often mediated 

by cytochrome P450 enzymes, was significant. These pathways can 

influence lung cancer risk by affecting the body's ability to process 

carcinogens found in tobacco smoke and environmental pollutants. 

Research detailed in Bernauer et al. (2006) emphasizes the diversity and 

functionality of cytochrome P450 enzymes in human lung tissue, which 

play a crucial role in the metabolic activation of chemicals inhaled via 

tobacco smoke, potentially contributing to carcinogenic effects. 

Additionally, Stipp and Acco (2021) review how these enzymes, through 

their interaction with proinflammatory cytokines in the tumor 

microenvironment, can influence carcinogenesis and modify the efficacy 

and toxicity of chemotherapy in lung cancer. Furthermore, the dibenzo-p-

dioxin catabolic process was identified. Dioxins are environmental 

pollutants known to be carcinogenic, and the body's ability to break them 

down can impact lung cancer risk, as these compounds can cause DNA 

damage and promote carcinogenesis (Valavanidis et al., 2013). 

In the comparison between current and never smokers (Tumor), where 

genes are underexpressed, several processes related to sensory 

perception were identified. Taste receptors, including those for bitter 

taste, are expressed in the respiratory system and play roles in detecting 

harmful substances and triggering protective responses. Underexpression 

of these genes in tumors might reflect alterations in cell signaling 
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pathways critical for recognizing and responding to carcinogenic stimuli. 

This includes the detection of chemical stimuli involved in the sensory 

perception of bitter taste. Studies like those by Risso et al. (2016) have 

shown that variations in the TAS2R38 bitter taste receptor influence 

smoking behavior, potentially due to differential sensitivity to bitter 

compounds in tobacco smoke. For the comparison between former and 

never smokers (Tumor) where genes are overexpressed, the cellular 

response to jasmonic acid stimulus and the response to jasmonic acid 

were highlighted. Although jasmonic acid is a plant hormone, the cellular 

response mechanisms it triggers, such as stress and defense responses 

(Rehman et al., 2023), have parallels in human biology. In the context of 

lung cancer, overexpression of genes related to these pathways may 

reflect an increased cellular effort to counteract the stress and damage 

caused by tumor growth and therapeutic interventions. The metabolism of 

daunorubicin and doxorubicin, both chemotherapy drugs used to treat 

various cancers including lung cancer, was also significant. The metabolic 

processes involved in handling these drugs are crucial for understanding 

their therapeutic effects and side effects in lung cancer treatment. 

For the comparison between tumor and normal tissues where genes are 

overexpressed, the adaptive immune response was again highlighted, 

underscoring its importance in targeting and destroying cancer cells. The 

immunoglobulin-mediated immune response and B cell-mediated 

immunity were also significant. These responses are part of the body's 

defense mechanism against cancer, and therapies that utilize or enhance 

immunoglobulins are being developed for cancer treatment. Additionally, 

the mitotic cell cycle process, crucial for cell division, was highlighted. In 

cancer, dysregulation of this process leads to uncontrolled cell 

proliferation, and targeting the cell cycle is a common strategy in cancer 

therapy. 
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In the comparison between tumor and normal tissues where genes are 

underexpressed, several processes crucial for maintaining normal tissue 

architecture and function were identified. This includes anatomical 

structure development, regulation of multicellular organismal processes, 

cell motility, and multicellular organismal processes. Underexpression of 

genes involved in these processes in tumors suggests a disruption in 

normal tissue organization, which is a hallmark of cancer, facilitating 

tumor invasion and metastasis. Proper segregation of chromosomes 

during cell division, critical for genomic stability, was also significant. 

Errors in this process can lead to mutations and cancer progression. 

Understanding these mechanisms can help in developing treatments that 

target cancer cell division. 

In the age-related comparison where genes are overexpressed, the 

adaptive immune response is critical in targeting and destroying cancer 

cells. Age-related changes in the immune system can impact the 

effectiveness of this response against lung cancer. The immune response 

in general, including the generation of diverse immune receptors capable 

of recognizing a wide range of antigens, is essential for effective immune 

surveillance. This includes processes such as the immunoglobulin-

mediated immune response and B cell-mediated immunity. Antibodies can 

recognize and bind to tumor antigens, marking cancer cells for destruction 

by the immune system. 

The analysis also identified several biological processes that are shared 

across different comparisons, underscoring common pathways potentially 

involved in lung cancer pathogenesis. Specifically, adaptive immune 

response, immunoglobulin-mediated immune response, and B cell-

mediated immunity were found to be significantly enriched in both the 

age-related and tumor versus normal comparisons. These shared 

processes highlight the pivotal role of the immune system in recognizing 

and responding to tumor cells. The adaptive immune response involves T 

cells that can target and destroy cancer cells, while immunoglobulin-
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mediated responses involve antibodies that mark cancer cells for 

destruction. B cells, which produce these antibodies, are critical for 

mounting an effective immune response against tumors. The presence of 

these shared processes across different comparisons suggests that 

enhancing these immune pathways could be a key strategy in developing 

effective treatments for lung cancer. Understanding the commonalities in 

these biological processes provides valuable insights into potential 

therapeutic targets and biomarkers for lung cancer. 
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Figure 3.16: Dot Plot of GO Biological Processes for Smoking Dataset. This plot organizes 
Gene Ontology (GO) Biological Processes along the y-axis, each linked to specific biological 
conditions such as smoking category, age, sex, and tumor presence. Vertical stacks of symbols 
illustrate the involvement within each condition, with the size of each symbol indicating the odds 
ratio, reflecting the strength of association. The color gradient from purple to red represents the 
adjusted p-values (-log10), highlighting the statistical significance of gene involvement in each 
condition. 
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As in chapter 3.3.5, a Directed Acyclic Graph (DAG) was generated to 

explore the relationships between the overexpressed biological processes 

for the TumorVsNormal contrast. This is shown in Figure 3.17. This DAG 

shows several similarities with the DAG constructed from the full dataset 

(without specific smoking categories), emphasizing core biological 

pathways involved in lung cancer. Furthermore, letters such as A, B, and 

C in front of the node names are aliases for depth-01 GO terms, providing 

a general location within the DAG. For example, "C" is the alias for 

metabolic process, so terms descended from metabolic processes will have 

a "C" associated with them, such as immune system response 

(Klopfenstein et al., 2018). 

The DAG reveals that many significant GO terms are related, forming a 

network of interconnected processes. It consists of three branches, where 

the left branch is related to the immune system process, the middle 

branch is related to immune response and the right branch is related to 

the cell cycle process. There are some differences between the DAGs in 

Figure 3.7 and Figure 3.17. The two branches related to the immune 

system in Figure 3.17 are unique for this DAG. In Figure 3.7, the left 

branch related to organization within the cell is unique for that DAG. There 

are a few similarities between the DAGs. Particularly, the node Cell Cycle 

Process (GO:0022402) connects to the more specific node Mitotic Cell 

Cycle Process (GO:1903047). 
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Figure 3.17: Directed Acyclic Graph (DAG) illustrating the top four most significant 
Biological Process Gene Ontology (GO:Biological Process) results for the overexpressed 
TumorVsNormal contrast. The arrows in the DAG point from child to parent, denoting a 
progression from more specific to more general terms. This visualization highlights the hierarchical 
relationships and biological pathways involved, emphasizing the interconnectivity and shared 
biological functions relevant to the overexpressed TumorVsNormal contrast. The yellow node is the 
most significant result, the light blue second most significant, the orange third most significant and 
the light green fourth most significant. The light red nodes represent remaining nodes in the DAG 
that are found to be significant GO:Biological Process results for the overexpressed TumorVsNormal 
contrast, but are not among the top four most significant. The white nodes are GO:BP results that 
are not found to be significant for the overexpressed TumorVsNormal contrast, but are part of the 
hierarchical structure of the DAG. Each of the nodes contain a unique GO ID, level (L) indicating 
the minimum path from the top root, depth (D) indicating the maximum path from the top root 
term and descendant count (d) indicating the total number of GO terms below the given node from 
the GO hierarchy structure (not shown in this DAG, but a part of the underlying Open Biological 
and Biomedical Ontologies file) (Klopfenstein et al., 2018). The letters A, B and C at the second 
most top nodes represent aliases for depth-01 GO terms, used to provide the general location in 
the GO DAG of any GO term. They stand for cellular process, biological regulation and metabolic 
process, respectively (Klopfenstein et al., 2018). The full name of the node with GO ID GO002460 
is “adaptive immune response based on somatic recombination of immune receptors built from 
immunoglobulin superfamily domains”. 
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3.4.6 Cellular Components (CC) from Gene Ontology (GO)  

An enrichment analysis of Gene Ontology (GO) Cellular Components (CC) 

was conducted to explore the broader cellular implications of differentially 

expressed genes identified in the study. Figure 3.18 visually maps these 

associations across various conditions, including comparisons between 

current and former smokers (Normal), current and never smokers 

(Tumor), age-related differences, and tumor versus normal tissue 

comparisons. 

In the comparison between current and former smokers (Normal) where 

genes are overexpressed, the plasma membrane proton-transporting V-

type ATPase complex was highlighted. This complex plays a crucial role in 

regulating the acidification of intracellular compartments, which is 

essential for various cellular processes including protein degradation and 

receptor-mediated endocytosis (Pamarthy et al., 2018). The 

overexpression of this complex may indicate enhanced cellular activity and 

metabolic processes associated with cancer progression. 

In the comparison between current and never smokers (Tumor) where 

genes are underexpressed, several cellular components related to vesicle 

formation and membrane structures were identified. These include 

vesicles, the side of the membrane, the external side of the plasma 

membrane, extracellular exosomes, and extracellular vesicles. These 

components are integral to processes such as intracellular transport, cell 

communication, and the immune response. Underexpression in tumors 

may suggest a reduction in these critical cellular functions, potentially 

contributing to tumor development and immune evasion. 

In the comparison between tumor and normal tissues where genes are 

underexpressed, several components critical for maintaining cellular 

structure and function were identified. These include the cell periphery, 

plasma membrane, extracellular region, cell surface, and the external 

encapsulating structure. The cell periphery and plasma membrane are 

vital for cell integrity and communication. The extracellular region and cell 
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surface are involved in interactions with the extracellular matrix and other 

cells, which are crucial for tissue organization and function. The external 

encapsulating structure provides structural support and protection to cells. 

Underexpression of these components in tumors suggests a breakdown in 

these critical functions, facilitating tumor invasion and metastasis. 

For the comparison between tumor and normal tissues where genes are 

overexpressed, components such as the immunoglobulin complex, 

extracellular region, extracellular space, nucleosome, and cell periphery 

were highlighted. The nucleosome is involved in the organization and 

regulation of DNA, playing a critical role in gene expression and cellular 

function. Overexpression of these components in tumors indicates an 

increase in cellular activities related to immune response and gene 

regulation, which could be a response to the presence of cancer cells. 

In the age-related comparison where genes are overexpressed, 

components such as the immunoglobulin complex, extracellular region, 

extracellular space, cell periphery, and blood microparticles were 

highlighted. The immunoglobulin complex is vital for the immune 

response, with antibodies playing a key role in identifying and neutralizing 

pathogens and cancer cells. The extracellular region and space, along with 

blood microparticles, are crucial for intercellular communication and the 

immune response. The cell periphery, including structures involved in cell 

signaling and interaction with the extracellular environment, is essential 

for maintaining cellular integrity and function. Overexpression of these 

components in older individuals may reflect an enhanced immune 

surveillance mechanism, potentially impacting the body's ability to 

recognize and respond to cancer cells. 
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Figure 3.18: Dot Plot of GO Cellular Components for Smoking Dataset. This plot show Gene 
Ontology (GO) Cellular Components associated with smoking category, age, sex-specific tissues, 
and tumor presence.  Symbols represent odds ratios (OR), with size indicating the magnitude of 
the OR. Upward-pointing triangles denote overexpressed genes, while downward-pointing triangles 
indicate underexpressed genes. The color gradient from purple to red represents adjusted p-values 
(-log10), with red marking the most statistically significant findings.  
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3.4.7 Molecular Functions (MF) from Gene Ontology (GO)  

An enrichment analysis of Gene Ontology (GO) Molecular Functions (MF) 

was conducted to explore the broader molecular implications of 

differentially expressed genes identified in the study. Figure 3.19 visually 

maps these associations across various conditions, including comparisons 

between current and former smokers (Normal), current and never 

smokers (Normal), former and never smokers (Tumor), age-related 

differences, comparisons between males and females, and tumor versus 

normal tissue comparisons. 

In the comparison between current and former smokers (Normal), where 

genes are overexpressed, flavonoid 3'-monooxygenase activity was 

highlighted. However, it is important to note that flavonoid 3'-

monooxygenase does not exist in humans. This enzyme is specific to 

plants, where it plays a role in the metabolism of flavonoids—compounds 

known for their antioxidant and potential anti-cancer properties. The 

identification of this activity in human gene expression data presents an 

interpretive challenge and suggests possible issues with annotation or 

cross-species comparisons. 

Similarly, in the comparison between current and never smokers 

(Normal), flavonoid 3'-monooxygenase activity was again highlighted. The 

repeated identification of this plant-specific enzyme in human data 

underscores the complexity of interpreting such results and raises 

questions about the accuracy of the annotations used.  

In the comparison between former and never smokers (Tumor) where 

genes are overexpressed, several dehydrogenase activities were 

identified, including alcohol dehydrogenase (NADP+) activity, aldo-keto 

reductase (NADP) activity, phenanthrene 9,10-monooxygenase activity, 

indanol dehydrogenase activity, and trans-1,2-dihydrobenzene-1,2-diol 

dehydrogenase activity. These enzymes are involved in the oxidation-

reduction processes essential for detoxifying carcinogens and other 

harmful substances (Orywal et al., 2020). Overexpression of these 



 
  126 

activities may indicate enhanced detoxification capacity in response to the 

carcinogenic environment associated with smoking. 

In the comparison between tumor and normal tissues where genes are 

underexpressed, several molecular functions crucial for cellular 

communication and signaling were highlighted. These include protein 

binding, signaling receptor binding, integrin binding, molecular function 

regulator activity, and calcium ion binding. Underexpression of these 

functions in tumors suggests a disruption in normal signaling pathways, 

which can contribute to uncontrolled cell growth and metastasis. 

For the comparison between tumor and normal tissues where genes are 

overexpressed, antigen binding was again significant, along with structural 

constituent of chromatin, structural molecule activity, protein 

heterodimerization activity, and cell adhesion molecule binding. 

Overexpression of these functions indicates enhanced cellular activities 

related to immune response, structural integrity, and cell-cell interactions, 

potentially reflecting the body's attempt to counteract tumor growth and 

spread. 

In the comparison between males and females where genes are 

overexpressed, various demethylase activities were highlighted, including 

histone H3 demethylase activity, histone demethylase activity, protein 

demethylase activity, demethylase activity, and 2-oxoglutarate-dependent 

dioxygenase activity. These enzymes play crucial roles in the regulation of 

gene expression through epigenetic modifications, which can impact 

cancer development and progression. 

In the age-related comparison where genes are overexpressed, antigen 

binding was prominently identified. This function is critical for immune 

surveillance and the identification of pathogens and cancer cells. The 

overexpression of antigen binding in older individuals may suggest an 

increased reliance on immune mechanisms to combat age-related changes 

and the emergence of cancer cells.  
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Figure 3.19: Dot Plot of GO Molecular Functions for Smoking Dataset. The dot plot shows 
Gene Ontology (GO) Molecular Functions associated with smoking category, age, gender, sex-
specific tissues, and tumor presence. Upward-pointing triangles denote overexpressed genes, while 
downward-pointing triangles indicate underexpressed genes. Larger symbols indicate higher odds 
ratios (OR), while a color gradient from purple to red represents the significance of p-values (-
log10 scale).  
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3.4.8 Validation of Differential Gene Expression Between Male 

and Female Samples in Smoking Dataset 

To ensure the robustness of the regression results, a validation check was 

conducted to confirm the differential expression of all genes between male 

and female samples. This followed the same structure as in Chapter 3.3.8. 

The dataset underwent a filtration process to include only those genes 

previously analyzed in the MaleVsFemale regression study. A 

comprehensive search was performed to match these genes against 

established lists of identifiers known to distinguish male from female gene 

expressions. This step was crucial in verifying that the identified genes 

were accurately reflecting sex-specific differences in expression, thereby 

bolstering the credibility of the regression findings. 

The selection of genes was based on their established roles in 

differentiating male and female gene expressions, specifically focusing on 

genes located on sex chromosomes (X and Y) and those known to be 

influenced by sex-specific factors. The dataset was filtered to include only 

those genes that were part of the MaleVsFemale regression analysis, 

ensuring consistency and relevance in the validation process. Each gene 

was cross-referenced with established databases and literature to confirm 

its differential expression between male and female samples. Key sources 

included scientific articles, genetic databases, and specialized studies on 

sex-linked gene expression.  

The verification process confirmed that certain genes located on the Y 

chromosome, such as RPS4Y1, DDX3Y, ZFY, USP9Y, UTY, PSMA6P1, 

LINC00278, TXLNG2P, PRKY, KDM5D, EIF1AY, and CD24P4, were 

overexpressed in male samples as shown in Table 3.4. These genes are 

known for their roles in male-specific functions and are typically not 

present or not expressed in female samples due to the absence of the Y 

chromosome. 
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Similarly like in Chapter 3.3.8, the gene XIST, located on the X 

chromosome, was verified to be underexpressed in male samples. XIST is 

involved in X-chromosome inactivation, a process essential in female 

samples to balance the dosage of X-linked genes (Brown et al., 1991). 

An interesting case was the IGHG4 gene, located on chromosome 14, 

which is not directly linked to sex chromosomes. However, its expression 

levels can be influenced by sex-specific factors such as hormonal 

differences and immune system variations. IgG4-related disease (IgG4-

RD), associated with the overexpression of IGHG4, shows a higher 

prevalence in middle-aged and elderly males. This disease involves 

fibroinflammatory infiltration of various organs and highlights how 

immune responses can differ between sexes (Guinee, 2018). 

 

Table 3.4: Differential expression of genes between male and female samples in smoking dataset 

Ensembl ID 

Gene 

Name Expr logFC AveExpr t 

adj.P.Val  

(-log10) 

ENSG00000229807 XIST Under -5.38 2.51 -73.9 infinite 

ENSG00000129824 RPS4Y1 Over 6.54 5.03 65.33 299.9 

ENSG00000067048 DDX3Y Over 5.33 4.15 62.53 288.43 

ENSG00000012817 KDM5D Over 4.49 3.58 56.21 260.91 

ENSG00000067646 ZFY Over 3.51 2.92 52.6 244.34 

ENSG00000183878 UTY Over 4.46 3.56 52.38 243.40 

ENSG00000114374 USP9Y Over 3.77 3.1 47.15 218.04 

ENSG00000215414 PSMA6P1 Over 3.05 3.12 43.51 199.52 

ENSG00000231535 LINC00278 Over 2.79 2.45 42.34 193.41 

ENSG00000131002 TXLNG2P Over 3.89 3.2 42.01 191.73 

ENSG00000198692 EIF1AY Over 3.03 2.61 41.38 188.44 

ENSG00000099725 PRKY Over 3.02 2.64 39.93 180.68 

ENSG00000185275 CD24P4 Over 1.84 2.36 23.92 89.59 

ENSG00000211892 IGHG4 Over 1.06 6.2 5.74 5.46 
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The validation process confirmed that the genes exhibit differential 

expression between male and female samples consistent with their known 

biological roles and chromosomal locations. Genes on the Y chromosome 

were consistently overexpressed in males, while XIST was underexpressed 

in males, aligning with its function in X-chromosome inactivation in 

females. The expression of IGHG4, although not sex-linked, was noted to 

vary due to immune response differences and its association with IgG4-

RD, more common in males. These findings support the reliability of the 

regression results and underscore the importance of considering both 

genetic and epigenetic factors in sex-specific gene expression studies. 

 

3.4.9 Comprehensive Analysis of Gene Expression in Human 

Protein Atlas (HPA) Tissues using Smoking Dataset 

The Human Protein Atlas (HPA) provides an invaluable resource for 

examining the distribution and expression levels of proteins across various 

human tissues. Understanding these variations is critical for uncovering 

the underlying biological mechanisms and their implications for health and 

disease. This section presents a comprehensive analysis of gene 

expression variations across different tissue types using HPA data. The 

primary aim is to explore how gene expression is influenced by smoking 

status, age, sex-specific differences, and tumor presence, thereby 

identifying significant patterns and associations, as shown in Figure 3.20. 

In the comparison of current smokers versus never smokers in tumor 

tissues, salivary gland tissue exhibited significant underexpression, 

indicating possible direct metastatic involvement or systemic effects on 

gland function. Intestinal tissues also showed underexpression, suggesting 

metabolic or inflammatory responses linked to lung cancer progression. 

Similarly, comparisons between former smokers and never smokers in 

tumor tissues revealed significant underexpression in the salivary gland, 

reinforcing the possibility of persistent systemic effects or direct 
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metastatic involvement. Salivary gland-type tumors of the lung are rare 

and typically originate from the submucosal exocrine glands of the large 

airways (Horio et al., 2024). These tumors are often misdiagnosed due to 

their rarity and the need for differential diagnosis to distinguish between 

primary and metastatic diseases. The management of these tumors 

requires comprehensive knowledge of diagnostics, including molecular 

characteristics, and treatment modalities like surgery, radiotherapy, and 

chemotherapy. Persistent underexpression of salivary gland tissue in 

smokers could reflect the complex interaction of systemic effects and 

direct metastatic involvement associated with lung cancer progression. 

The Tumor vs. Normal dataset was analyzed to understand the expression 

patterns in cancerous versus normal tissues. Overexpressed genes were 

prominently observed in lymphoid tissue, bone marrow, esophagus, 

stomach, and intestine. These tissues exhibited significant overexpression, 

reflecting active roles in tumor development and progression. For 

instance, overexpression in lymphoid tissue may indicate an immune 

response or lymphoid metastasis in lung cancer patients. Further analysis 

revealed that significant underexpression was noted in the lung, fallopian 

tube, adipose tissue, choroid plexus, and bone marrow. The lung tissue 

showed marked underexpression, emphasizing its central involvement in 

lung cancer. 

Sex-specific differences in gene expression were also observed. 

Underexpression was noted with a high odds ratio in tissues such as the 

lung, highlighting differential regulatory mechanisms that may be at play 

between males and females. 

The analysis also identified overlapping comparisons for various tissues 

and expression types. For example, intestine, lymphoid tissue, and 

stomach 1 showed significant gene expression changes across multiple 

comparisons including Age and Tumor vs. Normal. The lung was notable 

for its significant underexpression in both the Tissue vs. Sex and Tumor 

vs. Normal comparisons, reflecting its critical role in lung cancer 
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pathology. The salivary gland was another tissue with significant overlaps, 

showing underexpression in both Current vs. Never Tumor and Former vs. 

Never Tumor comparisons, highlighting persistent systemic effects or 

direct metastatic involvement. 

 
Figure 3.20: Dot Plot of Differential Gene Expression Analysis in Tissues using Smoking 
Dataset. This visualization illustrates the odds ratios (OR) for gene expression, where upward-
pointing triangles indicate overexpression and downward-pointing triangles represent 
underexpression. The size of each symbol correlates with the odds ratio. The accompanying color 
gradient denotes the adjusted p-value (-log10), highlighting the statistical significance of each 
gene's differential expression across various tissues. 
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3.4.10 Comprehensive Analysis of Gene Expression in 

Numerical HPA Cell Types using Smoking Dataset 

The Human Protein Atlas (HPA) provides an invaluable resource for 

examining the distribution and expression levels of proteins across various 

human cell types. Understanding these variations is essential for 

uncovering the underlying biological mechanisms and their implications for 

health and disease. This section presents a detailed analysis of gene 

expression variations across different cell types using numerical HPA data, 

focusing on how gene expression is influenced by smoking status, age, 

sex-specific differences, and tumor presence, as shown in Figure 3.21. 

In the comparison between current and never smokers with tumors, 

several cell types exhibit significant underexpression. Distal enterocytes 

show a loss of normal cellular function, possibly due to smoking-induced 

damage or cancer-related changes. Similarly, proximal enterocytes 

demonstrate underexpression, which may indicate compromised gut-lung 

axis interactions and overall cellular health (Haldar et al., 2023). 

Cholangiocytes exhibit reduced expression, highlighting systemic effects of 

smoking and its indirect impact on lung tissue. Serous glandular cells' 

underexpression points to potential disruptions in glandular secretions, 

which could influence lung mucosal environments and cancer risk. Myeloid 

dendritic cells show decreased expression, suggesting impaired antigen 

presentation and immune surveillance in the lung microenvironment (Hato 

et al., 2024). 

Comparing former smokers to never smokers with tumors reveals 

significant overexpression in specific cell types. Basal respiratory cells 

have high odds ratios indicating substantial overexpression, reflecting 

their role in maintaining respiratory epithelium and potential involvement 

in tumorigenesis. Exocrine glandular cells show increased secretory 

activity in response to past smoking, contributing to a pro-tumorigenic 

environment. 
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In the Tumor vs. Normal comparisons, there are notable findings for both 

overexpressed and underexpressed genes. Overexpressed genes in 

plasma cells reflect increased antibody production and immune response, 

potentially aiding in tumor progression. Memory B-cells exhibit heightened 

expression, suggesting an active immune role and possibly contributing to 

inflammation and tumor microenvironment modulation. Erythroid cells 

show increased expression, likely related to compensatory responses to 

hypoxia within tumors, promoting angiogenesis and tumor survival 

(Shevchenko et al., 2023). Naive B-cells' overexpression signifies 

enhanced immune activation, influencing tumor-immune interactions. B-

cells generally show robust overexpression, indicating a significant 

immune response that may affect tumor development and progression. 

Conversely, underexpressed genes in adipocytes suggest metabolic 

alterations and loss of adipose-related signaling in the tumor environment. 

Endothelial cells show underexpression, reflecting compromised vascular 

function critical for tumor growth and metastasis. Monocytes exhibit 

decreased expression, indicating impaired immune responses and reduced 

phagocytic activity within the tumor microenvironment. Lymphatic 

endothelial cells' underexpression suggests disrupted lymphatic function, 

impacting immune surveillance and fluid balance in the lungs. Alveolar 

cells type 1 show reduced expression, affecting gas exchange and 

indicating significant functional loss in lung cancer. 

Significant age-related overexpression is observed in various cell types, 

such as memory B-cells, naive B-cells, plasma cells, and B-cells. These 

high odds ratios indicate enhanced metabolic activity or stress responses 

in these cells as age advances, suggesting that aging leads to increased 

metabolic activity or stress responses. This reflects an attempt to 

counteract age-related declines in function or increased exposure to 

damaging agents over time. 
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In the context of tissue and sex interactions, significant underexpression 

is observed in alveolar cells type 2 and type 1. This underexpression 

suggests a loss of surfactant production, critical for lung function, 

potentially exacerbating cancer-related lung dysfunction. Reduced 

expression affects gas exchange, indicating significant lung impairment in 

the context of cancer and sex differences. 

Several cell types appear in more than one comparison, highlighting their 

critical roles. Memory B-cells are involved in both Age_up and 

TumorVsNormal_up comparisons, indicating their importance in aging and 

cancer. Naive B-cells appear in Age_up and TumorVsNormal_up, 

suggesting their role in immune responses across different conditions. 

Plasma cells are found in Age_up and TumorVsNormal_up, reflecting their 

significant role in antibody production and cancer progression. B-cells are 

present in Age_up and TumorVsNormal_up, highlighting their importance 

in immune surveillance and tumor interaction. Alveolar cells type 1 appear 

in both TissueXSex_down and TumorVsNormal_down, indicating their 

crucial function in lung health and disease. 

This comprehensive analysis elucidates the complex regulatory 

mechanisms underlying cell type-specific gene expression and identifies 

potential targets for therapeutic intervention, particularly in smoking-

related diseases and cancer. Overexpressed genes in smoking-affected 

cell types may reflect compensatory mechanisms or increased demand for 

specific functions, while underexpressed genes could indicate declines in 

critical pathways or cellular functions. Understanding sex-specific and age-

related differences in gene expression is crucial for developing targeted 

treatments and interventions. Identifying overexpressed genes in tumor 

cell types suggests potential therapeutic targets, whereas underexpressed 

genes may represent lost tumor suppressor functions. 
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Figure 3.21: Dot Plot of Top 20 differential gene expression analysis in cell types for the 
smoking dataset with over- and underexpression. The triangles indicate over- or 
underexpression. Triangles pointing upward represent overexpression, while those pointing 
downward represent underexpression. Each triangle is color-coded according to a scale that 
represents -log10(p-value), indicating the statistical significance of the over- or underexpression. 
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3.4.11 Analysis of Shared Qualitative and Numerical Marker 

Genes 

The study of cell type ontologies associated with lung cancer through both 

qualitative and numerical data from the Human Protein Atlas (HPA), as 

well as qualitative data from the Human Ensemble Cell Atlas (hECA) 

enriches our understanding of the molecular landscape within the lung 

cancer microenvironment. By visualizing the odds ratios and adjusted p-

values across different cell types, as illustrated in Figure 3.22, variations 

in gene expression under diverse experimental conditions can be 

examined. 

Significant findings from this analysis include the following observations. 

Alveolar cells type 2 are markedly downregulated in TissueXSex 

interactions and when comparing tumor versus normal tissues, which may 

reflect the impact of sex-specific factors and the aggressive nature of 

tumor growth on alveolar function. Endothelial cells exhibit significant 

downregulation in tumor versus normal tissue comparisons, indicating 

possible alterations in vascular structures within tumors or changes in 

angiogenic signaling. Macrophages and smooth muscle cells demonstrate 

notable changes in TumorVsNormal comparisons, possibly linked to their 

roles in tumor-stroma interactions and structural integrity of lung tissue 

(Cao et al., 2024; Ramamonjisoa & Ackerstaff, 2017). 

B-cells show enhanced expression levels in both age-related conditions 

and tumor versus normal comparisons, particularly noted in the hECA and 

numerical HPA marker genes. This suggests a potential role of B-cells in 

age-associated immune responses and their adaptation within the tumor 

microenvironment. In an intriguing anomaly observed in our empirical 

findings, B-cells displayed both upregulation and downregulation in the 

numerical tumor versus normal comparisons conducted using the Human 

Protein Atlas (HPA). Specifically, the comparison 

"Num_TumorVsNormal_up" shows B-cells being significantly upregulated 

with an odds ratio of approximately 6.97 and a high adjusted p-value (-
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log10) of 49.52, suggesting a robust overexpression in certain tumor 

environments. Conversely, the same cell type in the comparison 

"Num_TumorVsNormal_down" exhibits downregulation with a much lower 

odds ratio of about 1.55 and an adjusted p-value (-log10) of 3.20, 

indicating a relatively subdued expression. Appendix A.1 has a table of all 

adjusted p-values in scientific notation. This division in B-cell expression, 

characterized by distinct upregulation and downregulation within the same 

experimental framework, hints at complex, context-dependent roles of B-

cells in the tumor microenvironment. Notably, the underexpressed B-cells 

demonstrate significantly lower odds ratios and p-values compared to 

their overexpressed counterparts, which may reflect variations in immune 

responses or cellular adaptation mechanisms triggered by different tumor 

microenvironments. Research indicates that B cells can contribute 

significantly to tumor immunity through various mechanisms, including 

the production of antibodies and cytokines, and modulation of T-cell 

responses (Zhang et al., 2023). These functionalities underscore the dual 

nature of B-cell activities, where they can both support and inhibit tumor 

growth depending on their state and the surrounding microenvironmental 

conditions. 

The behavior of fibroblasts within the tumor versus normal comparisons 

reveals significant insights into their role in lung cancer. In the numerical 

comparisons from HPA, fibroblasts were observed both upregulated and 

downregulated, suggesting variable interactions with the tumor 

microenvironment. Specifically, in the comparison 

"Num_TumorVsNormal_down," fibroblasts demonstrated a substantial 

upregulation with an odds ratio of approximately 6.09 and a high adjusted 

p-value (expressed as -log10) of 43.75, indicating a strong association 

under these conditions. Conversely, the "Num_TumorVsNormal_up" 

comparison showed a lesser degree of upregulation with an odds ratio of 

about 2.17 and a lower adjusted p-value of 2.72. 

https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-023-00460-1
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Further analysis using qualitative data from hECA also showed fibroblasts 

experiencing both upregulation and downregulation. The 

"TumorVsNormal_hECA_down" comparison displayed a moderate 

upregulation with an odds ratio of 5.26 and an adjusted p-value of 2.37, 

while the "TumorVsNormal_hECA_up" comparison exhibited a more 

pronounced upregulation with an odds ratio of 11.79 and an adjusted p-

value of 3.16. 

These observations underline the dual nature of fibroblast behavior in lung 

cancer, potentially contributing to both tumor support through the 

construction of tumor microenvironments and resistance against tumor 

progression. Fibroblasts, particularly cancer-associated fibroblasts (CAFs), 

have been shown to contribute both to tumor progression and resistance 

mechanisms. They are implicated in various oncogenic processes such as 

angiogenesis, invasion, metastasis, and modulation of therapy resistance. 

The identification of specific fibroblast subtypes and their signaling 

pathways offers potential targets for therapeutic intervention, aimed at 

manipulating their tumor-promoting and -resisting roles (Fiori et al., 

2019; Joshi et al., 2021). The variability in their expression and the 

significance of their regulatory effects highlight the need for further 

investigation into the specific signals and pathways that govern fibroblast 

activity in different tumor conditions. This nuanced understanding could 

lead to targeted therapies that manipulate fibroblast functions to hinder 

tumor growth and progression. 

These observations underscore the complex interplay between different 

cell types in the lung and their responses to both intrinsic factors like sex 

and age and extrinsic pressures such as tumor presence. The implications 

of these findings are profound, suggesting that targeted therapies need to 

consider not only the heterogeneous nature of lung tumors but also the 

diversity of the cellular landscape in which these tumors exist. 
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Figure 3.22: Dot plot of cell type ontologies illustrating gene expression variations in 
lung cancer, using data from the Human Ensemble Cell Atlas (hECA) and the Human 
Protein Atlas (HPA). This plot arranges cell types vertically and experimental conditions 
horizontally, distinguishing "Num_" prefixed measurements from numerical HPA marker genes and 
others from qualitative hECA and HPA markers. Only cell types shared between numerical and 
qualitative marker genes are shown. Dot sizes indicate the Odds Ratio, illustrating expression 
strength, while the color gradient shows statistical significance (-log10 adj. p-value scale). 
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This chapter evaluates the significant findings of the study, contextualizing 

them within the broader scientific literature on lung cancer genomics and 

assessing their implications for future research and clinical practice. 

Through an in-depth analysis of differentially expressed genes between 

tumor and normal lung tissues, and the elucidation of the molecular 

impacts of smoking on gene expression, this chapter seeks to bridge 

empirical data with established theoretical frameworks. It explores the 

interplay between genetic factors and environmental influences, 

enhancing our understanding of lung cancer pathophysiology. 

The findings from the use of the CellTypeGenomics package, which 

facilitated the analysis of complex genomic data from The Human Protein 

Atlas (HPA) and The Cancer Genome Atlas (TCGA), are evaluated. This 

evaluation assesses the tool's efficacy in identifying and analyzing cell-

type origins of differentially expressed genes, providing a cornerstone for 

understanding the cellular dynamics at play in tumor environments versus 

normal tissues. Furthermore, the impact of smoking on gene expression 

patterns offers insight into how environmental factors modify genomic 

landscapes, which is essential for comprehending the variability in tumor 

biology and patient responses to treatments. 

Comparative analyses between over-representation analysis and cellular 

deconvolution are presented to highlight the methodological strengths and 

potential areas for further enhancement. The synthesis of findings from 

these comparisons establishes a perspective on the current research 

landscape and the contributions of this study. 

Moreover, this chapter discusses the clinical ramifications of the research, 

considering the potential for the findings to inform early detection 

strategies, prognosis, and personalized therapy approaches. It critically 

4 Discussion 



 
  142 

evaluates the strengths and limitations of the study, offering a balanced 

view that underscores both the scientific advancements achieved, and the 

challenges encountered. This chapter provides an integrated analysis of 

the study's findings with a broad discussion on the cell-type origins of 

differentially expressed genes in lung cancer. It connects empirical data 

with the theoretical constructs that have traditionally guided lung cancer 

research, illuminating the interplay between genetic dynamics and 

environmental influences such as smoking. This examination not only 

deepens our understanding of the molecular underpinnings of lung cancer 

but also evaluates the implications for future research and clinical 

practice. 

By evaluating the significance of the identified genes and their cellular 

origins, this discussion contextualizes the results within the broader field 

of lung cancer genomics. It reflects on how these insights enhance our 

comprehension of tumor biology and patient variability, supported by 

meticulous comparisons with existing literature and the integration of 

bioinformatics tools. This approach validates the research methodology 

and results, explores the clinical implications of the findings, and critically 

assesses the strengths and limitations of the study. This chapter 

underscores the contributions of this research to the field and outlines the 

path forward for subsequent investigations. 

 

4.1 Interpretation of Results 

The overarching aim of this thesis was to explore the cell-type origins of 

differentially expressed genes associated with lung cancer, with a 

particular focus on how smoking impacts gene expression. Leveraging 

data from The Human Protein Atlas (HPA) and The Cancer Genome Atlas 

(TCGA), the study has provided significant insights into the molecular 

mechanisms underpinning lung cancer. 
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4.1.1 Differential Expression in Tumor vs. Normal Tissue 

This thesis utilizes data from The Cancer Genome Atlas (TCGA) to 

elucidate significant differences in gene expression between tumor and 

normal lung tissues. Incorporating analyses on the impact of smoking 

enriches our understanding of environmental contributions to these 

molecular disparities. A comprehensive examination reveals distinct 

patterns of gene expression alterations, particularly emphasizing the 

consistent upregulation of genes fundamental to cancer progression, such 

as those governing cell cycle control, DNA repair, and apoptosis. 

A key finding from this study is the significant overexpression of bronchial 

epithelium basal cells in tumor tissues, suggesting their pivotal role in 

cancer progression and their potential utility as biomarkers for detecting 

malignant transformations within lung tissue. In contrast, type II alveolar 

cells are notably underexpressed, signifying a loss of their normal 

physiological roles under oncogenic stress, which could lead to impaired 

lung function and alterations in the tumor microenvironment. 

The Reactome Pathway Analysis further enriches these observations by 

highlighting the predominant overexpression of cell cycle pathways, 

elucidating their role in driving the uncontrolled cellular proliferation 

characteristic of malignancies. This analysis also reveals a marked 

underexpression of immune-related pathways, indicating sophisticated 

mechanisms by which tumors may evade immune detection. 

Further insights from Biological Processes (BP) derived from Gene 

Ontology (GO) underscore the significant overexpression of mitotic cell 

cycle processes and immune-related functions, such as immunoglobulin-

mediated responses and B cell-mediated immunity. These findings not 

only depict the aggressive nature of tumor cells but also reveal potential 

therapeutic targets that could harness these immune interactions to 

combat cancer more effectively. 
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Analyses of Cellular Components (CC) and Molecular Functions (MF) 

highlight the crucial roles of the immunoglobulin complex and antigen-

binding functions, which are significantly active within tumor biology. 

These components offer unique opportunities for developing targeted 

therapies that could disrupt these interactions to mitigate tumor growth 

and spread. 

The analysis of Differential Gene Expression (DEG) between tumor and 

normal tissues provides insights into the consistent upregulation of a 

diverse array of cell types. Notably, extravillous trophoblasts and 

erythroid cells demonstrate substantial overexpression. The presence of 

extravillous trophoblasts, typically associated with placental biology, may 

suggest mechanisms of invasive behavior akin to tumor cells, illuminating 

aspects of metastatic processes. Similarly, the upregulation of erythroid 

cells might reflect changes in oxygenation within the tumor 

microenvironment, potentially affecting tumor growth and treatment 

responses. Furthermore, the significant upregulation of cell types such as 

plasma cells, memory B-cells, naive B-cells, B-cells, suprabasal 

keratinocytes, basal keratinocytes, and squamous epithelial cells in lung 

cancer tissue provides essential insights into the disease's 

pathophysiology. The pronounced activity of various B-cell types, 

particularly plasma cells, suggests a robust immune response to tumor 

antigens, critical for developing immunotherapy strategies. The 

pronounced expression of keratinocytes and squamous epithelial cells 

points to disruptions in epithelial cell differentiation and proliferation, 

common features of lung carcinogenesis. 

Moreover, the analysis reveals notable underexpression of genes typically 

expressed in adipocytes, endothelial cells, and monocytes during 

tumorigenesis, highlighting a loss of normal physiological functions. This 

underexpression underscores the complex interplay between oncogenic 

signals and the cellular environment, suggesting that tumor progression 
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involves not only the activation of oncogenic pathways but also the 

suppression of normal cellular functions. 

This integrated analysis, propelled by the analytical capabilities of the 

CellTypeGenomics package, offers a nuanced understanding of the 

molecular differences between tumor and normal lung tissues, including 

the specific exacerbating effects of smoking. By detailing how key genes 

and pathways are altered in lung cancer, this research not only deepens 

our molecular understanding of the disease but also highlights critical 

targets for enhancing diagnostic and therapeutic strategies. These insights 

emphasize the clinical relevance of the molecular differences identified, 

suggesting their significant potential to impact lung cancer management 

and treatment outcomes effectively. This comprehensive examination sets 

a precedent for considering both genetic and environmental factors in 

cancer research, paving the way for more personalized and precise 

oncological interventions. 

 

4.1.2 Differential Expression in Tissue X Sex 

The investigation into differential gene expression across tissue types and 

sexes, particularly in the context of lung cancer, employs a nuanced 

analytical approach termed Tissue X Sex. This contrast analysis is 

essential as it offers more detailed insights than straightforward 

comparisons such as Male vs. Female or Tumor vs. Normal. Such 

contrasts are crucial for revealing complex dynamics in gene expression 

that are influenced by both sex and the disease state, providing a deeper 

understanding of the underlying molecular mechanisms. 

The Tissue X Sex contrast is precisely defined by the following 

mathematical expression: 

TissueXSex = (TM−TF) − (NM−NF) 
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In this formula, TM and TF denote gene expression levels in tumor tissues 

from males and females, respectively, while NM and NF  represent 

expression levels in normal tissues from males and females, respectively. 

This setup allows for an assessment of how sex differences influence gene 

expression in tumor tissues as compared to normal tissues. 

To further elucidate the effects of these sex-based differences, four 

distinct scenarios have been identified, each reflecting a unique pattern of 

differential expression: 

1. Greater Negative Deviation in Tumor than in Normal (TM<TF 

and |TM−TF|>|NM−NF|): This scenario suggests a more pronounced 

decrease in gene expression in male tumors than in female tumors, 

and to a greater extent than observed in normal tissues, pointing to 

enhanced gene repression in male tumors. 

2. Less Pronounced Positive Deviation in Tumor than in Normal 

(TM<TF  and |TM−TF|<|NM−NF|): Here, the increase in gene 

expression in tumors is less pronounced compared to that in normal 

tissues, indicating a subdued activation of expression in the tumor 

environment. 

3. Greater Positive Deviation in Tumor than in Normal (TM>TF  

and |TM−TF|>|NM−NF|): This pattern demonstrates an increase in 

gene expression in male tumors compared to female tumors, which 

is greater than the difference observed in normal tissues. This 

suggests an active sex-specific regulatory mechanism modifying 

gene expression in the tumor environment. 

4. Lesser Positive Deviation in Tumor than in Normal (TM>TF  and 

|TM−TF|<|NM−NF|): This final scenario shows increased gene 

expression in male tumors compared to female tumors, but with a 

less severe difference than in normal tissues, implying a decrease in 

positive regulatory influences within the tumor setting. 

To further illustrate the process of determining which of the identified 

scenarios applies when a cell type is underexpressed, consider the 
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example of Alveolar cells type 2 as presented in Chapter 3.3.10. This cell 

type is underexpressed in the Tissue X Sex contrast. Utilizing the 

CellTypeGenomics package, a comprehensive Fisher test analysis was 

conducted, resulting in the identification of 12 genes that align with the 

first scenario. This scenario highlights that Alveolar cells type 2 are 

underexpressed in male tumors compared to female tumors, a pattern not 

observed in normal tissues. This consistent underexpression of Alveolar 

cells type 2 in male tumors, but not in normal tissues, suggests the 

existence of a sex-specific molecular pathway potentially significant in the 

pathogenesis of lung cancer. 

The detailed analysis of the significant 43 Ensembl IDs derived from the 

Tissue X Sex regression contrast reveals important insights into gene 

expression patterns influenced by sex in lung cancer. Among these 

significant IDs, 15 fall under Scenario 1, indicating a greater negative 

deviation in tumors compared to normal tissues. Additionally, 3 Ensembl 

IDs correspond to Scenario 4, signifying a lesser negative deviation in 

tumors than in normal tissues. 

For overexpressed genes, 25 Ensembl IDs align with Scenario 3. This 

scenario represents a greater positive deviation in tumors than in normal 

tissues. These findings suggest a complex regulation of gene expression 

influenced by both sex and the disease state in lung cancer. The increased 

expression of these genes in male tumors compared to female tumors, 

coupled with their lower expression in normal tissues, implies an active 

role in sex-specific tumorigenesis driven by regulatory mechanisms unique 

to the tumor environment. 

Understanding such patterns is crucial for developing targeted therapeutic 

strategies that effectively account for sex-specific variations in gene 

expression. By identifying specific genes that follow distinct patterns of 

differential expression, researchers can pinpoint potential targets for 

therapeutic intervention. This strategy enhances the precision of 
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treatments and underscores the necessity of integrating molecular 

diagnostics into clinical practices to optimize patient outcomes. 

 

4.1.3 Impact of Smoking on Gene Expression 

Chapter 3.4 provides a comprehensive analysis of how smoking status 

profoundly influences gene expression within lung cancer tissues, utilizing 

extensive data from the Human Protein Atlas (HPA). This analysis 

underscores the complexity of gene expression changes across various cell 

types and elucidates the intricate relationships between smoking, tumor 

development, and tissue-specific variations. The findings indicate that 

smoking not only triggers oncogenic processes but also leaves a lasting 

molecular imprint that significantly shapes the disease's progression and 

response to treatment. 

The study identified 671 genes significantly overexpressed in tumor 

tissues compared to normal tissues, indicating their potential roles in 

cancer progression and their linkage to smoking. Conversely, 2161 genes 

were significantly underexpressed in tumor tissues, reflecting a loss of 

normal cellular functions and possible tumor suppressive properties being 

overridden by oncogenic processes. 

In particular, genes involved in xenobiotic metabolism pathways were 

notably upregulated among smokers. This overexpression reflects a 

biological adaptation aimed at detoxifying the myriad of harmful 

compounds present in tobacco smoke. The upregulation of these pathways 

highlights the body’s attempt to counteract the carcinogenic effects of 

smoking-related compounds, which can directly contribute to DNA damage 

and subsequent cancer initiation. 

Reactome Pathway Analysis further highlighted pathways related to cell 

cycle control, such as Cell Cycle and Mitotic Cell Cycle, which were 

predominantly overexpressed. This signifies their vital role in the rapid 

proliferation characteristic of cancer cells. Immune-related pathways also 
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showed increased activity, suggesting a complex interplay within the 

tumor microenvironment that could facilitate immune evasion and tumor 

growth. 

Biological Processes from Gene Ontology (GO) analysis revealed that 

processes involved in the metabolism of xenobiotics by cytochrome P450 

were notably overexpressed. This links smoking directly to increased lung 

cancer risk through the metabolic activation of carcinogens. Sensory 

perception pathways, particularly those related to chemical stimulus 

detection, were underexpressed, potentially reducing the lung's ability to 

detect and respond to carcinogenic threats. 

The study also conducted a comprehensive analysis of gene expression in 

HPA cell types, comparing smokers and non-smokers. Significant 

underexpression in current smokers was observed in distal enterocytes 

and myeloid dendritic cells, indicative of smoking-induced damage and 

compromised immune surveillance. Conversely, notable overexpression in 

former smokers was observed in basal respiratory cells and exocrine 

glandular cells, suggesting alterations in respiratory epithelium and 

secretory processes potentially contributing to a pro-tumorigenic 

environment. Enhanced expression in plasma cells and memory B-cells 

across different smoker categories points to an adaptive immune 

response, while alterations in metabolic pathways underline the 

physiological impact of smoking on tumor and normal tissues alike. 

A focused analysis of qualitative and numerical marker genes provided 

substantial insights into how cellular responses to smoking influence 

tumor progression. This detailed evaluation revealed that alveolar cells 

type 2, crucial for gas exchange, were markedly downregulated in 

interactions influenced by sex and in comparisons between tumor and 

normal tissues. This downregulation underscores the impact of sex-

specific factors and the aggressive nature of tumor growth on alveolar 

function, potentially compromising lung function and responsiveness to 

treatment. Similarly, alveolar cells type 1 also showed significant 
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downregulation under these conditions, both in the Human Ensemble Cell 

Atlas (hECA) for qualitative marker genes and in the Human Protein Atlas 

(HPA) for numerical marker genes. The consistent downregulation across 

these two cell types raises concerns about the overall integrity of the 

lung's alveolar structure in the face of tumorigenic stress, possibly leading 

to diminished lung capacity and impaired respiratory function. 

Furthermore, endothelial cells, which form the linings of blood vessels, 

exhibited significant downregulation in tumor versus normal tissue 

comparisons, indicating potential alterations in vascular structures or 

changes in angiogenic signaling within tumors. Such vascular changes are 

crucial as they could affect tumor blood supply, influencing tumor growth 

and metastasis potential, thereby highlighting the critical role of the 

vascular component in cancer progression. 

In addition, B-cells, known for their role in the immune response, showed 

enhanced expression levels in both age-related conditions and in 

comparisons between tumor and normal tissues. This increase suggests 

their involvement in age-associated immune responses and their 

adaptation within the tumor microenvironment. The numerical HPA also 

found a significant downregulation of B-cells, but at a fraction of the 

significant value of the upregulated B-cells, indicating a predominant 

upregulation. The enhanced activity of B-cells could indicate a 

compensatory mechanism to counteract the immunosuppressive 

environment created by tumors, or it might reflect an age-related increase 

in inflammatory responses that inadvertently support tumor progression. 

 

4.1.4 Utilization of Bioinformatics Tools and Integration with 

Genomic Databases 

The integration of The Human Protein Atlas (HPA) and The Cancer 

Genome Atlas (TCGA) databases facilitated a comprehensive exploration 

of gene expression variations across different cell types and conditions. 
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The CellTypeGenomics package was pivotal in managing these complex 

datasets, showcasing its utility in genomic research. The iterative 

refinement and application of this package underscored its adaptability 

and robustness, enhancing the statistical integrity and comprehensiveness 

of the analysis. 

Utilizing the TCGA database allowed for a thorough examination of gene 

expression profiles in lung cancer, while the integration with HPA data 

provided functional context to the genetic information. This dual-database 

approach enriched the study by combining genomic and proteomic data, 

offering a holistic view of the molecular mechanisms underpinning lung 

cancer. 

The CellTypeGenomics package enabled precise mapping of differentially 

expressed genes (DEGs) to specific cell types, facilitating a deeper 

understanding of cellular dynamics in lung cancer. Its flexibility in 

handling large datasets and capability for iterative refinement were crucial 

for the analysis. 

The effective use of bioinformatics tools and databases not only enhanced 

the accuracy and depth of the findings but also demonstrated the power of 

computational approaches in genomic research. This approach reinforced 

the reliability of the findings and highlighted the potential of integrated 

bioinformatics tools in advancing genomic research. 

 

4.2 Contextualization and Synthesis of Findings 

This thesis significantly advances our understanding of lung cancer 

genetics, with a particular focus on how smoking modulates gene 

expression. The contextualization of these findings draws upon and is 

compared with significant prior studies, including the influential work by 

Alexandrov et al. (2016). This synthesis not only confirms previous 
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observations but also provides new insights that enhance our 

comprehension of lung cancer’s molecular basis. 

 

4.2.1 Comparative Analysis with Other Studies 

The observed differential expression aligns with findings from pivotal 

studies that mapped genomic changes in lung cancers, corroborating the 

role of specific genes in tumorigenesis. The impact of smoking on gene 

expression echoes the mutational signatures identified by Alexandrov et 

al. (2016), which linked smoking with increased mutation burdens and 

specific mutational signatures in lung cancers. This alignment provides a 

functional context to the mutational changes induced by smoking, 

enhancing the understanding of their role in cancer progression. For 

instance, the upregulation of genes involved in xenobiotic metabolism 

pathways observed in this study reflects the body's response to detoxify 

harmful compounds found in tobacco smoke, a process highlighted in the 

mutational signatures described by Alexandrov et al. 

Additionally, studies by Govindan et al. (2012) and Cancer Genome Atlas 

Research Network (2014) have shown similar patterns of gene expression 

changes associated with smoking in lung cancer, supporting the findings 

of this thesis. These studies reinforce the notion that smoking induces 

widespread genetic alterations that contribute to lung carcinogenesis. 

 

4.2.2 Bridging Molecular Insights with Clinical Observations 

The study’s molecular insights correlate well with clinical observations 

regarding differential treatment responses in smokers versus non-

smokers. This correlation suggests that gene expression profiles 

influenced by smoking could affect the tumor microenvironment and 

response to therapy. For example, the alterations in immune-related 

genes suggest modifications in the tumor microenvironment that could 
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affect tumor immunity and potentially offer new targets for 

immunotherapy in smokers. Understanding these molecular differences 

can guide the development of targeted therapies, providing a more 

personalized approach to lung cancer care and improving treatment 

outcomes. 

Studies by Schiller et al. (2002) and Herbst et al. (2008) have 

documented differences in treatment efficacy between smokers and non-

smokers, which may be attributed to the molecular changes identified in 

this thesis. These clinical observations highlight the potential for gene 

expression profiles to serve as biomarkers for tailoring treatment 

strategies. 

By contextualizing these findings within existing literature, this thesis 

underscores the critical role of smoking in shaping the genetic landscape 

of lung cancer and highlights the importance of integrating genomic and 

proteomic data to fully understand the impact of environmental factors on 

cancer development. The alignment of this study's results with those of 

Alexandrov et al. (2016), Govindan et al. (2012), and Cancer Genome 

Atlas Research Network (2014) reinforces the validity of the findings and 

contributes to a deeper, more nuanced understanding of lung cancer 

genetics in the context of smoking. 

 

4.2.3 Methodology Comparison and Integration 

This chapter presents an in-depth comparison between the methodologies 

employed in this study, specifically Over-Representation Analysis (ORA) 

using the CellTypeGenomics package, and cellular deconvolution methods, 

exemplified by CIBERSORTx. It further discusses the potential advantages 

of integrating these methodologies to refine cell type-specific annotations 

in lung cancer research. 
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Over-Representation Analysis (ORA) is a statistical technique designed to 

ascertain if a predefined group of genes, such as those linked to specific 

cell types, is more frequently represented within a larger gene set than 

would be expected by chance. This process typically involves comparing a 

list of differentially expressed genes (DEGs) against a background gene 

set using statistical tests like the hypergeometric test or Fisher's exact 

test to determine the probability that the observed gene overlap occurs by 

chance. 

In our methodology, the CellTypeGenomics package maps DEGs to cell 

types using marker genes cataloged in the HPA. This process involves 

mapping Ensembl gene IDs to their respective cell types based on HPA 

data, followed by statistical analysis to verify the presence of these cell 

type-specific genes among the DEGs using Fisher's exact test, 

complemented by the Benjamini-Hochberg procedure to control the false 

discovery rate (FDR). 

Unlike cellular deconvolution methods like CIBERSORTx, which estimate 

cell type proportions, ORA as implemented in our study focuses on 

identifying statistically significant links between DEGs and specific cell 

types, thereby offering advantages such as precision in annotation 

through comprehensive databases like the HPA and enhanced statistical 

rigor from combining Fisher’s exact test with FDR correction. 

Cellular deconvolution, particularly through the application of 

CIBERSORTx, is a sophisticated approach utilized to annotate genes with 

cell type identities based on bulk RNA sequencing data. CIBERSORTx 

applies a gene expression matrix based on bulk RNA sequencing data and 

a signature expression matrix from known cell types (often derived from 

single-cell RNA sequencing data) to decompose experimental RNA 

sequencing data into proportions of cell types present, summarized in a 

cell type matrix. Cellular deconvolution applies the signature matrix and 

the cell type matrix to explain the gene expression matrix, presenting a 

prediction problem. This methodology is especially beneficial in analyzing 
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heterogeneous tissues, where direct measurement of individual cell types 

is impractical. A notable issue with CIBERSORTx is its limitation to only 

identify cell types present in the signature matrix, which may not 

encompass all cell types within a sample. Thus, CIBERSORTx's ability to 

identify and quantify cell types is confined by the data provided in the 

signature matrix. Furthermore, CIBERSORTx often exhibits discrepancies 

in the relative percentages of cell types it predicts, although the relative 

difference across similar cell types often aligns with other methodologies 

like Fluorescence-Activated Cell Sorting (FACS). 

 

Potential Integration of Methods 

Future research could benefit from integrating cellular deconvolution and 

over-representation analysis methodologies. Cellular deconvolution 

estimates cell type proportions within a sample, providing quantitative 

insights into tissue composition. When combined with over-representation 

analysis, which identifies significant associations between differentially 

expressed genes and specific cell types, this approach offers a 

comprehensive view of the cellular landscape in complex tissues. 

Using cellular deconvolution to estimate cell type proportions, followed by 

over-representation analysis to map gene expression changes to specific 

cell types, enhances precision in cell type-specific annotations. The 

CellTypeGenomics package, with its detailed gene annotation capabilities 

using data from the Human Protein Atlas, complements this approach by 

providing high-resolution insights into the cellular origins of gene 

expression changes. Furthermore, cellular deconvolution includes 

quantization per sample, allowing for more precise measurements of gene 

expression at the cellular level. 

In lung cancer research, this combined methodology can elucidate how 

smoking influences gene expression at the cellular level, leading to refined 

models of disease progression and treatment response. Such integrated 
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models are invaluable for developing personalized therapeutic strategies, 

accounting for tumor heterogeneity and environmental factors. 

Beyond lung cancer, this integrated approach can be applied to other 

cancers and complex diseases, broadening the impact of bioinformatics 

tools in genomic research. Leveraging detailed gene annotation 

capabilities and proportional insights enables a nuanced understanding of 

gene expression dynamics. 

 

4.3 Implications of the Findings 

This section explores the practical implications of our findings, discussing 

how they contribute to lung cancer research, influence clinical 

applications, and impact broader oncological practices. 

 

4.3.1 Clinical Implications and Therapeutic Opportunities 

Our findings provide potential targets for therapeutic intervention through 

the identification of genes differentially expressed in tumor versus normal 

tissues. These genes, particularly those involved in cell proliferation and 

survival pathways, could serve as focal points for the development of 

targeted drug therapies. Inhibiting these upregulated genes in tumors 

might effectively reduce tumor growth or improve the response to existing 

treatments. Additionally, understanding the modulation of gene 

expression by smoking offers a clear path toward personalized medicine. 

Given the distinct gene expression profiles associated with different 

smoking histories, treatment plans could be tailored more precisely to 

enhance efficacy and minimize side effects, based on a patient's smoking 

status. This approach would not only personalize treatment but also 

optimize resource allocation in clinical settings. 
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4.3.2 Potential for Early Detection and Prognosis 

The identification of specific biomarkers from differentially expressed 

genes in early-stage tumors presents opportunities for early detection. 

Developing diagnostic tests based on these biomarkers could significantly 

improve early detection rates, leading to earlier intervention and 

potentially better patient outcomes. Furthermore, the gene expression 

profiles linked to smoking status might also provide prognostic tools, 

helping predict the aggressiveness of the disease and guiding treatment 

decisions. Early detection biomarkers can also facilitate routine screening, 

allowing for timely treatment and improved survival rates. 

 

4.3.3 Enhancing the Understanding of Lung Cancer 

Pathophysiology 

The comprehensive analysis enabled by the CellTypeGenomics package 

enhances our understanding of lung cancer's pathophysiology. By 

elucidating the cellular origins of differentially expressed genes and their 

association with environmental factors like smoking, this study contributes 

to a deeper understanding of how external factors can influence cellular 

behavior and disease progression. These insights are crucial for 

developing new models of lung cancer that reflect its biological complexity 

more accurately, potentially influencing both research and clinical 

approaches to the disease. Additionally, integrating genomic and 

proteomic data facilitates a more holistic understanding of the interactions 

between genetic and environmental factors in lung cancer development. 

 

4.3.4 Policy and Public Health Implications 

The findings underscore the importance of smoking cessation programs 

and policies aimed at reducing tobacco use to mitigate lung cancer risk. 

Public health strategies can be informed by the molecular evidence linking 
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smoking to specific genetic alterations, reinforcing the need for preventive 

measures and education. This research supports the development of 

targeted public health campaigns that address the molecular impact of 

smoking, potentially reducing the incidence of lung cancer and improving 

population health outcomes. 

 

4.4 Challenges and Considerations 

While the study provided valuable insights into the molecular dynamics of 

lung cancer, it faced several challenges inherent in the integration and 

interpretation of complex genomic data. The reliance on public genomic 

databases such as TCGA and HPA introduced potential biases due to 

variations in sample collection, data processing, and demographic 

diversity. These factors could limit the generalizability of the findings, as 

variations in sample handling and population representation might 

influence the observed gene expression patterns. 

Integrating diverse data sources posed additional challenges, particularly 

in harmonizing data across different platforms and ensuring consistency in 

annotations and gene identifiers. These issues underscore the need for 

robust bioinformatics pipelines capable of managing and standardizing 

heterogeneous datasets effectively. Iterative refinement and validation of 

these pipelines are essential to improve the reliability of genomic 

analyses. 

Moreover, interpreting differential gene expression and pathway analysis 

results requires careful consideration of biological context and 

experimental conditions. The dynamic nature of gene expression, 

influenced by both intrinsic and extrinsic factors, necessitates robust 

validation of computational predictions through experimental methods 

such as quantitative PCR (qPCR) and functional assays. This validation is 

crucial to ascertain the biological relevance of identified gene expression 

changes and their associations with specific cell types and pathways. 
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To overcome these challenges, continuous efforts are needed to refine 

data collection and analysis techniques in genomic research. Enhancing 

the accuracy and completeness of public genomic databases through 

improved sample collection protocols, standardized data processing 

methods, and comprehensive metadata annotation is imperative. 

Additionally, fostering collaborations between computational and 

experimental biologists can help bridge the gap between theoretical 

predictions and empirical validation, thus strengthening the overall 

robustness of genomic studies. 

In summary, while this study has provided valuable insights into the 

molecular dynamics of lung cancer, the challenges encountered highlight 

the importance of continuous methodological improvements and 

interdisciplinary approaches in genomic research. Addressing these 

challenges will ensure that future studies can build on these findings with 

greater accuracy and generalizability, further advancing our understanding 

of lung cancer and its underlying mechanisms. 

 

4.5 Strengths and Limitations 

4.5.1 Strengths 

One of the primary strengths of this study is the utilization of advanced 

bioinformatics tools, particularly the CellTypeGenomics package. This 

package is not only tailored for cell-type origin studies to ensure relevancy 

and precision but is also optimized for efficiency, facilitating rapid analysis 

of extensive gene lists. Being open source, it encourages collaboration and 

further development within the scientific community, enhancing the 

potential for innovative approaches. The integration of large-scale 

genomic data from The Human Protein Atlas (HPA) and The Cancer 

Genome Atlas (TCGA) provided a robust framework for a comprehensive 

analysis of gene expression variations. This approach enabled a detailed 
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exploration of complex genetic interactions and their implications for lung 

cancer, offering novel insights into how smoking modulates gene 

expression at the cellular level. Additionally, the statistical rigor applied 

through methods like Fisher’s exact test and the Benjamini-Hochberg 

procedure ensured the reliability and accuracy of the results. 

 

4.5.2 Limitations 

Despite these strengths, the study has certain limitations. The reliance on 

secondary genomic data sources, such as The Human Protein Atlas (HPA) 

and The Cancer Genome Atlas (TCGA), introduces potential biases related 

to data collection and sample heterogeneity. For example, the findings 

indicate that males are generally diagnosed at older ages, particularly in 

later stages of lung cancer. This trend may be influenced by several 

factors, including higher smoking rates among males and potential delays 

in seeking medical care, leading to later-stage diagnoses. These factors 

may affect the generalizability of the findings and restrict the ability to 

draw definitive causal inferences.  

Additionally, our approach considers a data-driven gene selection method 

where the Human Protein Atlas determines a numeric threshold for 

signature genes. This can be contrasted with methods that employ strong 

signature genes specific to particular cell types, adding a more qualitative 

dimension to the analysis. While this method aids in the identification of 

potential signature genes, it may also introduce biases by potentially 

overlooking strong, type-specific signature genes that do not meet the 

numeric threshold. Furthermore, the observational nature of the study 

limits the ability to establish direct cause-and-effect relationships between 

smoking and gene expression changes. Future research should aim to 

incorporate primary data collection and experimental validation to confirm 

these findings and address the identified biases. Expanding the study to 
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include diverse populations and additional environmental factors could 

also enhance the comprehensiveness and applicability of the results.  
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This chapter synthesizes the findings from the investigation into the 

molecular dynamics of lung cancer, reflecting on the implications of these 

results for future research and clinical practice. It draws together the key 

outcomes of the analyses conducted using The Human Protein Atlas (HPA) 

and The Cancer Genome Atlas (TCGA), facilitated by the capabilities of the 

CellTypeGenomics package. The conclusions drawn not only highlight 

advances in understanding lung cancer biology but also underscore the 

potential for these insights to inform more effective and personalized 

treatment strategies. The following sections detail the principal findings, 

their broader implications, the inherent challenges encountered, and the 

recommended directions for future research. 

 

5.1 Summary of Key Findings 

The comprehensive investigation conducted in this thesis has yielded 

significant insights into the differential gene expression between tumor 

and normal lung tissues, particularly highlighting the impact of smoking 

on these genetic alterations. Utilizing advanced bioinformatics tools, 

including the CellTypeGenomics package, and genomic data from HPA and 

TCGA, this study identified key genes that are significantly upregulated or 

downregulated in tumors, offering valuable insights into the cellular 

dynamics driving lung cancer progression and revealing potential targets 

for therapeutic intervention and biomarkers for early detection. 

A pivotal aspect of this research was associating these differentially 

expressed genes with specific cell types, made possible through the 

utilization of HPA data within the CellTypeGenomics package. This analysis 

has significantly advanced our understanding of the cellular context of 

5 Conclusion 
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these gene expression changes and their roles in lung cancer. For 

example, bronchial epithelium basal cells were significantly overexpressed 

in tumor tissues, suggesting their vital role in cancer progression and their 

potential as biomarkers for identifying malignant transformations. 

Conversely, alveolar cells type II exhibited notable underexpression, 

indicating a loss of their normal physiological roles under oncogenic 

stress. 

Further, the integration of gene ontology (GO) and Reactome pathway 

analyses categorized these genes according to their roles in biological 

processes, cellular components, and molecular functions, mapping the 

disrupted functional pathways in lung cancer. The Reactome Pathway 

Analysis underscored the predominant overexpression of cell cycle 

pathways, elucidating their role in fostering uncontrolled cellular 

proliferation, a hallmark of malignancy. Immune-related pathways showed 

a marked underexpression, suggesting mechanisms by which tumors 

evade immune surveillance.  

The analysis of Differential Gene Expression (DEG) between tumor and 

normal lung tissues reveals significant upregulation of various cell types, 

such as erythroid cells, suggesting altered oxygenation in the tumor 

microenvironment. Enhanced expression of plasma cells and different B-

cell types, alongside keratinocytes, indicates robust immune responses 

and disruptions in epithelial cell functioning, which are critical for 

understanding lung cancer pathophysiology and identifying potential 

therapeutic targets. Conversely, the notable underexpression of genes in 

adipocytes, endothelial cells, and monocytes suggests a loss of normal 

functions, highlighting the dual nature of lung cancer progression through 

oncogenic activation and suppression of regular cellular activities. 

The study also revealed sex-specific differences in gene expression, 

emphasizing the necessity for personalized therapeutic strategies. For 

instance, the Tissue X Sex contrast analysis identified genes that exhibited 

different patterns of expression between male and female tumors 
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compared to normal tissues. This analysis provided insights into sex-

specific regulatory mechanisms that influence tumorigenesis, underscoring 

the importance of considering sex as a biological variable in lung cancer 

research and treatment. 

Overall, the integration of TCGA and HPA data through the 

CellTypeGenomics package has facilitated a nuanced understanding of the 

molecular differences between tumor and normal lung tissues. This 

research not only deepens our comprehension of lung cancer's molecular 

basis but also highlights potential targets for diagnostic and therapeutic 

strategies, paving the way for more personalized and effective 

interventions. These insights have significant potential to impact lung 

cancer management and treatment outcomes, emphasizing the 

importance of integrating genetic and environmental factors in cancer 

research. 

 

5.2 Implications and Significance 

The findings from this study have profound implications for the scientific 

understanding and clinical management of lung cancer. By elucidating the 

differential gene expression between tumor and normal lung tissues, 

especially in the context of smoking, this research advances our 

knowledge of the molecular underpinnings of lung cancer. This enhanced 

understanding supports the development of more precise diagnostic tools 

and targeted therapeutic strategies. 

A key outcome of this study is the demonstration of the CellTypeGenomics 

package as a powerful tool for researchers globally. While this study 

specifically applies the package to lung cancer and the autoimmune 

condition psoriasis, there is significant potential for its application across a 

wide range of diseases. By identifying key genes and pathways that are 

differentially expressed and associating these changes with specific cell 

types, the CellTypeGenomics package enables the tailoring of treatments 



 
  165 

to individual genetic profiles and environmental factors, such as smoking 

habits. This personalization of therapy is crucial for improving treatment 

efficacy and patient outcomes. 

The detailed insights provided by the CellTypeGenomics package into the 

roles of specific cell types and molecular pathways in disease progression 

are invaluable for developing new therapeutic strategies. For instance, the 

identification of overexpressed bronchial epithelium basal cells and 

underexpressed alveolar cells type II in tumor tissues suggests specific 

cellular targets for intervention. Targeting these cell types and the 

pathways they influence could lead to more effective treatments that 

address the underlying mechanisms of lung cancer. 

Moreover, the study's findings on the impact of smoking on gene 

expression profiles highlight the need for considering smoking history in 

the molecular profiling of lung cancer patients. Understanding how 

smoking-induced alterations affect tumor biology can guide the 

development of therapies that exploit these molecular vulnerabilities, 

potentially improving the efficacy of treatments for smokers with lung 

cancer. 

Overall, the integration of genomic data from TCGA and HPA, facilitated by 

the CellTypeGenomics package, has provided a comprehensive and 

nuanced understanding of lung cancer biology. These insights have 

significant potential to impact clinical practice by informing the 

development of more personalized and targeted treatment strategies, 

ultimately improving patient care and outcomes. The CellTypeGenomics 

package stands as a promising resource for researchers worldwide, 

offering the potential to make better and more informed decisions across 

a wide range of diseases. This study underscores the importance of 

integrating genomic and environmental data to refine therapeutic 

approaches, paving the way for advancements in the precision and 

effectiveness of disease treatments. 
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5.3 Future Work 

To broaden the impact and enhance the scientific rigor of this research, 

future studies should prioritize the development and utilization of 

experimental models to validate the causal relationships suggested in this 

study. Longitudinal studies are particularly crucial for examining the 

reversibility of smoking-related gene expression changes. These studies 

will offer vital insights into the temporal dynamics of gene expression and 

assess whether the alterations induced by smoking can be mitigated 

following cessation. 

Additionally, integrating survival analyses will be pivotal. Such analyses 

are designed to explore the relationship between specific gene expression 

levels and patient survival rates, providing essential insights into how 

individual genes may influence the progression of cancer. This 

understanding is particularly significant in oncology, where gene 

expression data can directly inform therapeutic strategies and 

prognostication. 

The CellTypeGenomics package has demonstrated considerable potential 

in this study, and future work should aim to validate its broader 

applicability. This package could become a powerful tool for researchers 

globally, applicable to a wide range of diseases, including various types of 

cancer, autoimmune conditions, genetic disorders, physiological diseases, 

degenerative diseases, and pathological infections. Future studies should 

focus on validating this potential across diverse disease contexts to 

establish the package's utility in different areas of biomedical research. By 

doing so, the CellTypeGenomics package could significantly advance our 

understanding of complex diseases and contribute to the development of 

more effective and personalized therapeutic strategies. 

Experimental validation of computational predictions is equally crucial. 

Techniques such as quantitative PCR (qPCR), Western blotting, and 

functional assays should be employed to confirm the pathways and 
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mechanisms identified in this thesis. This step will not only strengthen the 

reliability of the findings but also deepen our understanding of the 

molecular impacts of smoking on lung cancer. 

Furthermore, the utility of the CellTypeGenomics package should be 

expanded to assess its performance across various cancer types. This 

exploration will help validate the effectiveness of the developed tools and 

may lead to notable advancements in cancer diagnostics and treatment. 

Incorporating multi-omics approaches—including proteomics, 

metabolomics, and transcriptomics—will provide a more comprehensive 

view of the molecular mechanisms at play. This integrative strategy will 

offer a holistic view of how smoking and other environmental factors 

influence cellular processes, thereby elucidating the intricate interactions 

between genetics and the environment in the development of cancer. 

The application of machine learning and artificial intelligence (AI) offers a 

transformative potential for advancing lung cancer genomic research. 

These technologies can significantly enhance the ability to identify 

complex patterns and predictive markers that are not apparent through 

traditional methods. Machine learning models can be trained to predict 

outcomes such as disease progression, response to treatment, and patient 

survival rates from gene expression profiles. Moreover, AI can facilitate 

the integration of multi-omics data, accelerating the analysis process and 

improving the identification of potential therapeutic targets. Embracing 

these advanced computational tools will likely advance personalized 

medicine by enabling treatment plans tailored to the genetic profiles of 

individual tumors, optimizing therapeutic efficacy while minimizing side 

effects. 

Collaborative efforts with clinical researchers will be essential for 

translating these computational and experimental findings into clinical 

practice. Linking predictive models and validations with real patient data 

and outcomes will help in crafting personalized treatment strategies and 
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enhancing prognostic tools. Such collaborative endeavors will ultimately 

improve patient care in oncology, effectively bridging the gap between 

research findings and their practical application in clinical settings.  
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This chapter provides a compilation of supplementary materials that 

enhance the insights discussed throughout this thesis. It includes detailed 

tables and additional data that complement the visual representations and 

analyses within the main text. 

Appendix A.1 provides a table summarizing cell type ontologies from 

qualitative hECA, qualitative HPA, and numerical HPA data, focusing on 

shared cell types. It details adjusted p-values and odds ratios for various 

cell types under different conditions, such as age, sex-specific 

interactions, and tumor versus normal tissue comparisons. 

Appendix A.2 presents the cell types of differentially expressed genes for 

the full dataset. It offers a detailed view of cellular changes associated 

with lung cancer. 

Appendix A.3 delves into the impact of smoking on gene expression, 

presenting data from the smoking-related dataset. It highlights how 

smoking alters gene expression across different cell types, providing 

insights into the molecular adjustments that occur in lung cancer due to 

smoking. 

Appendix A.4 lists the top 20 Reactome pathways derived from the full 

dataset, illustrating the significant biological processes and pathways that 

are perturbed in lung cancer. This section provides a deeper 

understanding of the pathway dynamics involved in the disease. 

Appendix A.5 outlines the top 20 Reactome pathways from the smoking-

related dataset, emphasizing the pathways that are predominantly 

influenced by smoking. This appendix helps to pinpoint specific biological 

processes that smoking impacts, aiding in the understanding of its role in 

lung cancer progression. 

A. Appendices 
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Appendix A.6 through A.11 provide detailed Gene Ontology (GO) analyses 

for different aspects of lung cancer: 

Appendix A.6 details the biological processes affected in lung cancer 

as revealed by Gene Ontology (GO) analysis of the full dataset. 

Appendix A.7 outlines the biological processes influenced by 

smoking, based on GO analysis of the smoking dataset. 

Appendix A.8 identifies the top 20 cellular components affected in 

lung cancer, providing insights from GO analysis of the full dataset. 

Appendix A.9 specifies the top 20 cellular components influenced by 

smoking, as detailed in the GO analysis of the smoking dataset. 

Appendix A.10 displays the molecular functions affected in lung 

cancer, highlighting findings from GO analysis of the full dataset. 

Appendix A.11 reports on the molecular functions influenced by 

smoking, as uncovered in the GO analysis of the smoking dataset. 

 

Each appendix is designed to extend the data representation and analysis 

presented in the thesis, providing a richer and more comprehensive 

understanding of the genetic and molecular landscape of lung cancer.  
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A.1 Cell Type Ontologies (hECA, Qualitative HPA and 

Numerical HPA) 

Comparison Cell Type Adj. p-value Odds Ratio 
Age hECA up b-cells 6.71e-03 172.18 
TumorVsNormal hECA up b-cells 1.63e-02 10.08 
TissueXSex hECA down alveolar cells type 2 2.44e-04 1919.33 
TissueXSex HPA down alveolar cells type 2 4.02e-02 2519.88 
TumorVsNormal hECA down alveolar cells type 2 2.17e-06 74.88 
TumorVsNormal HPA down alveolar cells type 2 1.63e-02 inf 
TumorVsNormal hECA down endothelial cells 2.89e-15 22.61 
TumorVsNormal HPA down endothelial cells 4.73e-03 inf 
TumorVsNormal hECA down macrophages 1.49e-07 14.59 
TumorVsNormal hECA down smooth muscle cells 3.64e-02 5.1 
TumorVsNormal hECA down fibroblasts 4.25e-03 5.26 
TumorVsNormal hECA up fibroblasts 6.98e-04 11.79 
TumorVsNormal hECA down ciliated cells 4.25e-03 15.58 
TumorVsNormal hECA down alveolar cells type 1 2.17e-06 74.88 
TumorVsNormal HPA up basal keratinocytes 8.99e-04 inf 
Num Age up b-cells 1.30e-08 42.54 
Num TissueXSex down alveolar cells type 2 1.75e-04 inf 
Num TissueXSex down alveolar cells type 1 4.04e-02 119.08 
Num TumorVsNormal up b-cells 3.01e-50 6.97 
Num TumorVsNormal up basal keratinocytes 1.50e-30 9.02 
Num TumorVsNormal up fibroblasts 1.90e-03 2.17 
Num TumorVsNormal down endothelial cells 2.79e-120 17.14 
Num TumorVsNormal down alveolar cells type 1 1.75e-63 9.24 
Num TumorVsNormal down alveolar cells type 2 5.25e-57 10.89 
Num TumorVsNormal down macrophages 5.05e-56 6.24 
Num TumorVsNormal down smooth muscle cells 5.25e-55 7.51 
Num TumorVsNormal down fibroblasts 1.79e-44 6.09 
Num TumorVsNormal down ciliated cells 3.96e-23 3.49 
Num TumorVsNormal down b-cells 6.32e-04 1.55 
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A.2 Cell Types of Differentially Expressed Genes for the Full 

Dataset 

Comparison Cell Types Adj. p-value Odds Ratio 

Age down Plasma cells 1.51e-10 140.12 
Age down Erythroid cells 9.28e-05 38.31 
Age up Basal keratinocytes 2.42e-17 76.37 
Age up Suprabasal keratinocytes 2.34e-12 34.42 
Age up Basal squamous epithelial cells 4.67e-07 24.01 
Age up Squamous epithelial cells 1.17e-06 20.41 
Age up Basal respiratory cells 1.92e-06 23.95 
Age up naive B-cell 7.16e-04 11.34 
Age up Plasma cells 2.29e-03 8.85 
Age up memory B-cell 5.09e-03 9.31 
Age up Salivary duct cells 6.54e-03 20.34 
Age up B-cells 6.54e-03 6.72 
Age up Fibroblasts 1.73e-02 8.6 
TissueXSex down Alveolar cells type 2 2.30e-19 185.95 
TissueXSex down Alveolar cells type 1 1.71e-08 44.07 
TissueXSex up Basal keratinocytes 7.33e-26 161.9 
TissueXSex up Squamous epithelial cells 2.03e-23 111.87 
TissueXSex up Suprabasal keratinocytes 1.72e-21 84.21 
TissueXSex up Basal squamous epithelial cells 2.63e-15 57.88 
TissueXSex up Basal respiratory cells 7.41e-13 50.9 
TissueXSex up Club cells 1.38e-06 35.03 
TumorVsNormal down Adipocytes 1.31e-111 11.04 
TumorVsNormal down Endothelial cells 4.10e-106 14.3 
TumorVsNormal down monocytes 9.47e-90 4.59 
TumorVsNormal down Macrophages 2.07e-80 7.95 
TumorVsNormal down Kupffer cells 3.32e-63 6.94 
TumorVsNormal down Alveolar cells type 2 2.40e-62 11.49 
TumorVsNormal down Alveolar cells type 1 8.20e-61 8.55 
TumorVsNormal down granulocytes 1.06e-60 3.25 
TumorVsNormal down Lymphatic endothelial cells 2.47e-56 7.92 
TumorVsNormal down Microglial cells 1.23e-46 4.09 
TumorVsNormal down Smooth muscle cells 1.38e-42 5.96 
TumorVsNormal down Hofbauer cells 2.75e-41 4.76 
TumorVsNormal down dendritic cells 7.02e-41 3.27 
TumorVsNormal down Fibroblasts 3.30e-36 5.1 
TumorVsNormal down intermediate monocyte 9.92e-32 4.84 
TumorVsNormal down neutrophil 4.08e-30 2.92 
TumorVsNormal down non-classical monocyte 9.50e-30 4.22 
TumorVsNormal down Langerhans cells 1.99e-29 3.61 
TumorVsNormal down classical monocyte 4.34e-29 4.61 
TumorVsNormal down NK-cells 1.57e-28 3.21 
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TumorVsNormal down Leydig cells 4.51e-27 4.73 
TumorVsNormal down myeloid DC 4.33e-26 4.32 
TumorVsNormal down T-cells 7.56e-21 2.38 
TumorVsNormal down Peritubular cells 8.71e-18 3.42 
TumorVsNormal down Schwann cells 4.99e-17 3.45 
TumorVsNormal down eosinophil 1.64e-15 2.72 
TumorVsNormal down Mesothelial cells 3.15e-14 3.74 
TumorVsNormal down Oligodendrocyte precursor cells 3.88e-14 1.9 
TumorVsNormal down Astrocytes 1.78e-13 2 
TumorVsNormal down basophil 2.26e-13 2.17 
TumorVsNormal down Ciliated cells 9.69e-13 2.56 
TumorVsNormal down Oligodendrocytes 1.03e-10 1.75 
TumorVsNormal down Cardiomyocytes 1.86e-09 2.06 
TumorVsNormal down plasmacytoid DC 2.09e-09 2.22 
TumorVsNormal down Glandular and luminal cells 3.40e-07 2.34 
TumorVsNormal down Excitatory neurons 9.09e-07 1.48 
TumorVsNormal down Sertoli cells 1.48e-06 2.36 
TumorVsNormal down Skeletal myocytes 2.27e-06 1.98 
TumorVsNormal down Basal prostatic cells 5.33e-06 2.62 
TumorVsNormal down Inhibitory neurons 8.91e-06 1.44 
TumorVsNormal down Ovarian stromal cells 1.45e-05 2.36 
TumorVsNormal down Endometrial stromal cells 2.29e-05 2.23 
TumorVsNormal down B-cells 3.24e-05 1.65 
TumorVsNormal down MAIT T-cell 3.97e-05 2.26 
TumorVsNormal down Muller glia cells 3.41e-04 1.77 
TumorVsNormal down Hepatocytes 6.09e-04 1.53 
TumorVsNormal down NK-cell 1.01e-03 1.85 
TumorVsNormal down gdT-cell 4.76e-03 1.86 
TumorVsNormal down Ionocytes 5.03e-03 1.77 
TumorVsNormal down Secretory cells 8.86e-03 2.03 
TumorVsNormal down naive CD4 T-cell 9.05e-03 1.68 
TumorVsNormal down Mucus glandular cells 9.05e-03 2 
TumorVsNormal down Cholangiocytes 9.74e-03 1.82 
TumorVsNormal down Prostatic glandular cells 2.45e-02 1.61 
TumorVsNormal down naive CD8 T-cell 2.71e-02 1.59 
TumorVsNormal up Extravillous trophoblasts 7.14e-76 8.66 
TumorVsNormal up Plasma cells 1.10e-65 8.05 
TumorVsNormal up Suprabasal keratinocytes 5.52e-49 7.15 
TumorVsNormal up Erythroid cells 6.07e-47 7.95 
TumorVsNormal up Basal keratinocytes 1.03e-46 10.35 
TumorVsNormal up memory B-cell 1.84e-37 6.32 
TumorVsNormal up Squamous epithelial cells 4.13e-35 6.62 
TumorVsNormal up naive B-cell 2.95e-33 5.72 
TumorVsNormal up Undifferentiated cells 1.12e-32 9.36 
TumorVsNormal up Basal respiratory cells 2.34e-32 7.69 
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TumorVsNormal up Cytotrophoblasts 3.38e-25 5.23 
TumorVsNormal up B-cells 1.20e-23 3.66 
TumorVsNormal up Spermatogonia 1.48e-19 4.04 
TumorVsNormal up Basal squamous epithelial cells 1.34e-16 4.47 
TumorVsNormal up Club cells 2.08e-16 6.57 
TumorVsNormal up Ionocytes 2.19e-16 5.13 
TumorVsNormal up Oocytes 7.75e-12 2.43 
TumorVsNormal up Ductal cells 1.57e-10 4.76 
TumorVsNormal up Distal enterocytes 2.85e-09 2.54 
TumorVsNormal up Serous glandular cells 5.26e-09 3.81 
TumorVsNormal up T-reg 5.94e-09 2.94 
TumorVsNormal up Salivary duct cells 3.47e-08 5 
TumorVsNormal up Syncytiotrophoblasts 4.13e-07 2.17 
TumorVsNormal up Spermatocytes 3.37e-06 1.79 
TumorVsNormal up Pancreatic endocrine cells 1.06e-05 3.18 
TumorVsNormal up Intestinal goblet cells 4.43e-05 2.46 
TumorVsNormal up plasmacytoid DC 6.13e-05 2.07 
TumorVsNormal up Glandular and luminal cells 3.78e-04 2.27 
TumorVsNormal up Proximal enterocytes 4.37e-04 1.74 
TumorVsNormal up Breast myoepithelial cells 1.59e-03 2.6 
TumorVsNormal up Paneth cells 1.59e-03 2.02 
TumorVsNormal up Exocrine glandular cells 1.84e-03 2.47 
TumorVsNormal up Fibroblasts 1.00e-02 1.82 
TumorVsNormal up Gastric mucus-secreting cells 1.09e-02 1.74 
TumorVsNormal up Mucus glandular cells 1.15e-02 2.37 
TumorVsNormal up Breast glandular cells 1.25e-02 2.32 
TumorVsNormal up T-cells 2.90e-02 1.39 
TumorVsNormal up Cholangiocytes 3.75e-02 1.92 
TumorVsNormal up Endometrial stromal cells 4.93e-02 1.75 
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A.3 Cell Types of Differentially Expressed Genes for the 

Smoking Dataset 

Comparison Cell Types 
Adj. p-
value 

Odds 
Ratio 

Age up memory B-cell 2.99e-10 74.39 
Age up naive B-cell 2.99e-10 71.91 
Age up Plasma cells 1.68e-09 56.04 
Age up B-cells 1.30e-08 42.54 
CurrentVsNever Tumor 
down 

Distal enterocytes 6.34e-03 16.18 

CurrentVsNever Tumor 
down 

Proximal enterocytes 1.14e-02 12.18 

CurrentVsNever Tumor 
down 

Cholangiocytes 1.23e-02 26.27 

CurrentVsNever Tumor 
down 

Serous glandular cells 1.35e-02 23.01 

CurrentVsNever Tumor 
down 

myeloid DC 3.89e-02 14.58 

FormerVsNever Tumor 
up 

Basal respiratory cells 3.06e-03 101.34 

FormerVsNever Tumor 
up 

Exocrine glandular cells 4.71e-02 67.55 

TissueXSex down Alveolar cells type 2 1.75e-04 inf 
TissueXSex down Alveolar cells type 1 4.04e-02 119.08 
TumorVsNormal down Adipocytes 3.18e-141 14.65 
TumorVsNormal down Endothelial cells 2.79e-120 17.14 
TumorVsNormal down monocytes 3.49e-75 4.29 
TumorVsNormal down Lymphatic endothelial cells 2.56e-66 9.50 
TumorVsNormal down Alveolar cells type 1 1.75e-63 9.24 
TumorVsNormal down granulocytes 6.43e-61 3.38 
TumorVsNormal down Alveolar cells type 2 5.25e-57 10.89 
TumorVsNormal down Macrophages 5.05e-56 6.24 
TumorVsNormal down Smooth muscle cells 5.25e-55 7.51 
TumorVsNormal down Kupffer cells 4.70e-46 5.71 
TumorVsNormal down Fibroblasts 1.79e-44 6.09 
TumorVsNormal down Leydig cells 4.83e-38 6.19 
TumorVsNormal down dendritic cells 7.76e-38 3.24 
TumorVsNormal down Hofbauer cells 5.48e-33 4.30 
TumorVsNormal down intermediate monocyte 7.89e-31 4.92 
TumorVsNormal down Microglial cells 9.74e-31 3.37 
TumorVsNormal down classical monocyte 4.09e-30 4.89 
TumorVsNormal down non-classical monocyte 5.50e-30 4.39 
TumorVsNormal down NK-cells 4.95e-28 3.29 
TumorVsNormal down neutrophil 1.62e-27 2.89 
TumorVsNormal down myeloid DC 2.05e-24 4.30 
TumorVsNormal down Peritubular cells 9.37e-24 4.15 
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TumorVsNormal down Langerhans cells 2.31e-23 3.31 
TumorVsNormal down Ciliated cells 3.96e-23 3.49 
TumorVsNormal down eosinophil 1.13e-19 3.12 
TumorVsNormal down T-cells 1.25e-18 2.34 
TumorVsNormal down Schwann cells 2.08e-15 3.37 
TumorVsNormal down Mesothelial cells 2.62e-15 4.03 
TumorVsNormal down basophil 2.25e-11 2.10 
TumorVsNormal down Cardiomyocytes 2.77e-11 2.25 
TumorVsNormal down Sertoli cells 7.51e-11 3.07 
TumorVsNormal down Astrocytes 1.67e-10 1.89 
TumorVsNormal down Oligodendrocyte precursor cells 4.25e-09 1.71 
TumorVsNormal down Ovarian stromal cells 2.09e-08 2.92 
TumorVsNormal down Skeletal myocytes 3.93e-08 2.22 
TumorVsNormal down Muller glia cells 3.93e-08 2.32 
TumorVsNormal down Basal prostatic cells 4.87e-08 3.08 
TumorVsNormal down plasmacytoid DC 1.11e-07 2.11 
TumorVsNormal down NK-cell 9.21e-07 2.37 
TumorVsNormal down gdT-cell 7.41e-06 2.54 
TumorVsNormal down Glandular and luminal cells 2.33e-05 2.14 
TumorVsNormal down Endometrial stromal cells 3.18e-05 2.26 
TumorVsNormal down Oligodendrocytes 6.42e-05 1.46 
TumorVsNormal down Hepatocytes 4.52e-04 1.56 
TumorVsNormal down Breast myoepithelial cells 4.79e-04 2.35 
TumorVsNormal down B-cells 6.32e-04 1.55 
TumorVsNormal down Inhibitory neurons 7.13e-04 1.34 
TumorVsNormal down MAIT T-cell 7.60e-04 2.04 
TumorVsNormal down Secretory cells 2.25e-03 2.23 
TumorVsNormal down Excitatory neurons 2.74e-03 1.30 
TumorVsNormal down Cholangiocytes 2.93e-03 2.00 
TumorVsNormal down Melanocytes 8.62e-03 1.76 
TumorVsNormal down Ionocytes 9.43e-03 1.76 
TumorVsNormal down Granulosa cells 2.21e-02 1.67 
TumorVsNormal down Serous glandular cells 4.88e-02 1.58 
TumorVsNormal up Plasma cells 2.35e-113 16.28 
TumorVsNormal up memory B-cell 2.86e-65 11.86 
TumorVsNormal up Erythroid cells 3.03e-64 12.61 
TumorVsNormal up naive B-cell 6.22e-63 11.21 
TumorVsNormal up B-cells 3.01e-50 6.97 
TumorVsNormal up Extravillous trophoblasts 5.92e-50 7.74 
TumorVsNormal up Undifferentiated cells 1.41e-40 13.70 
TumorVsNormal up Basal keratinocytes 1.50e-30 9.02 
TumorVsNormal up Spermatogonia 1.01e-29 6.21 
TumorVsNormal up Suprabasal keratinocytes 5.25e-29 6.02 
TumorVsNormal up Squamous epithelial cells 2.25e-23 6.06 
TumorVsNormal up Basal respiratory cells 1.26e-20 6.75 
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TumorVsNormal up Gastric mucus-secreting cells 4.70e-18 4.94 
TumorVsNormal up Cytotrophoblasts 1.24e-15 4.66 
TumorVsNormal up Club cells 2.44e-13 6.85 
TumorVsNormal up Ionocytes 6.66e-13 5.26 
TumorVsNormal up Distal enterocytes 2.48e-12 3.32 
TumorVsNormal up T-reg 2.48e-12 4.03 
TumorVsNormal up Spermatocytes 7.70e-12 2.50 
TumorVsNormal up Oocytes 2.19e-11 2.71 
TumorVsNormal up Basal squamous epithelial cells 3.65e-10 3.96 
TumorVsNormal up Serous glandular cells 1.75e-09 4.61 
TumorVsNormal up Ductal cells 2.20e-08 4.87 
TumorVsNormal up Intestinal goblet cells 5.55e-07 3.24 
TumorVsNormal up Salivary duct cells 2.62e-06 4.98 
TumorVsNormal up Pancreatic endocrine cells 2.31e-05 3.56 
TumorVsNormal up Cholangiocytes 3.90e-05 3.41 
TumorVsNormal up Exocrine glandular cells 6.20e-05 3.40 
TumorVsNormal up Paneth cells 2.69e-04 2.44 
TumorVsNormal up Glandular and luminal cells 2.92e-04 2.59 
TumorVsNormal up Proximal enterocytes 3.36e-04 1.91 
TumorVsNormal up Breast glandular cells 4.43e-04 3.38 
TumorVsNormal up Breast myoepithelial cells 1.07e-03 3.05 
TumorVsNormal up plasmacytoid DC 1.72e-03 2.01 
TumorVsNormal up Fibroblasts 1.90e-03 2.17 
TumorVsNormal up T-cells 3.79e-03 1.62 
TumorVsNormal up Endometrial stromal cells 6.02e-03 2.27 
TumorVsNormal up Enteroendocrine cells 1.25e-02 2.15 
TumorVsNormal up Syncytiotrophoblasts 2.29e-02 1.59 
TumorVsNormal up Mucus glandular cells 2.41e-02 2.38 
TumorVsNormal up Collecting duct cells 4.31e-02 2.07 
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A.4 Reactome Pathways for Full Dataset (Top 20) 

Comparison Reactome:id Pathway 
Adj. p-
value 

Odds 
ratio 

TissueXSex up R-HSA-
6805567 

Keratinization 1.11e-16 47.95 

TissueXSex up R-HSA-
5619043 

Defective SLC2A1 causes 
GLUT1 deficiency syndrome 1 
(GLUT1DS1) 

3.85e-03 430.73 

TissueXSex up R-HSA-
193775 

Synthesis of bile acids and 
bile salts via 24-
hydroxycholesterol 

3.15e-03 21.78 

TissueXSex up R-HSA-
193807 

Synthesis of bile acids and 
bile salts via 27-
hydroxycholesterol 

1.99e-03 27.92 

TissueXSex up R-HSA-
5357801 

Programmed Cell Death 1.09e-03 8.15 

TissueXSex up R-HSA-
9754189 

Germ layer formation at 
gastrulation 

1.00e-03 40.65 

TissueXSex up R-HSA-
9823739 

Formation of the anterior 
neural plate 

6.33e-04 52.63 

TissueXSex up R-HSA-
109581 

Apoptosis 5.00e-04 10.13 

TissueXSex up R-HSA-
9832991 

Formation of the posterior 
neural plate 

3.46e-04 74.59 

TissueXSex up R-HSA-
452723 

Transcriptional regulation of 
pluripotent stem cells 

3.44e-03 20.76 

TissueXSex up R-HSA-75153 Apoptotic execution phase 1.58e-04 27.33 
TissueXSex up R-HSA-

9725554 
Differentiation of 
keratinocytes in interfollicular 
epidermis in mammalian skin 

9.86e-05 32.44 

TissueXSex up R-HSA-
9734767 

Developmental Cell Lineages 9.86e-05 32.44 

TissueXSex up R-HSA-
111465 

Apoptotic cleavage of cellular 
proteins 

5.62e-05 39.88 

TissueXSex up R-HSA-
351906 

Apoptotic cleavage of cell 
adhesion  proteins 

1.41e-06 174.91 

TissueXSex up R-HSA-
1266738 

Developmental Biology 1.49e-08 8.14 

TissueXSex up R-HSA-
6809371 

Formation of the cornified 
envelope 

1.11e-16 82.36 

TissueXSex up R-HSA-
446107 

Type I hemidesmosome 
assembly 

2.14e-04 99.48 

TissueXSex down R-HSA-
913709 

O-linked glycosylation of 
mucins 

7.14e-03 15.68 

TissueXSex down R-HSA-
3906995 

Diseases associated with O-
glycosylation of proteins 

8.10e-03 14.64 

TissueXSex down R-HSA-
427589 

Type II Na+/Pi cotransporters 8.63e-03 133.35 

TissueXSex down R-HSA-
427652 

Sodium-coupled phosphate 
cotransporters 

1.21e-02 88.88 



 
  197 

TissueXSex down R-HSA-
5173105 

O-linked glycosylation 2.22e-02 8.45 

TissueXSex down R-HSA-
168179 

Toll Like Receptor TLR1:TLR2 
Cascade 

2.32e-02 8.26 

TissueXSex down R-HSA-
2142770 

Synthesis of 15-
eicosatetraenoic acid 
derivatives 

3.75e-02 25.36 

TissueXSex down R-HSA-
1500931 

Cell-Cell communication 3.31e-02 6.77 

TissueXSex down R-HSA-
166016 

Toll Like Receptor 4 (TLR4) 
Cascade 

3.34e-02 6.73 

TissueXSex down R-HSA-
3781865 

Diseases of glycosylation 4.77e-02 5.5 

TissueXSex down R-HSA-
5621481 

C-type lectin receptors (CLRs) 4.81e-02 5.48 

TissueXSex down R-HSA-
168898 

Toll-like Receptor Cascades 4.98e-02 5.37 

TissueXSex down R-HSA-
168249 

Innate Immune System 6.76e-03 3.44 

TissueXSex down R-HSA-
181438 

Toll Like Receptor 2 (TLR2) 
Cascade 

2.32e-02 8.26 

TissueXSex down R-HSA-
5621480 

Dectin-2 family 5.71e-03 17.69 

TissueXSex down R-HSA-
1566977 

Fibronectin matrix formation 1.21e-02 88.88 

TissueXSex down R-HSA-
5619045 

Defective SLC34A2 causes 
pulmonary alveolar 
microlithiasis (PALM) 

5.19e-03 266.74 

TissueXSex down R-HSA-
5687583 

Defective SLC34A2 causes 
PALM 

5.19e-03 266.74 

TissueXSex down R-HSA-
5683826 

Surfactant metabolism 1.11e-16 221.67 

TissueXSex down R-HSA-
5688890 

Defective CSF2RA causes 
SMDP4 

1.21e-09 622.44 

Age up R-HSA-
6791312 

TP53 Regulates Transcription 
of Cell Cycle Genes 

1.11e-02 13.6 

Age up R-HSA-
6799198 

Complex I biogenesis 9.22e-03 15.04 

Age up R-HSA-
109704 

PI3K Cascade 8.92e-03 15.31 

Age up R-HSA-
380108 

Chemokine receptors bind 
chemokines 

8.63e-03 15.59 

Age up R-HSA-
2173782 

Binding and Uptake of 
Ligands by Scavenger 
Receptors 

7.99e-03 8.03 

Age up R-HSA-
2033515 

t(4;14) translocations of 
FGFR3 

7.30e-03 207.35 

Age up R-HSA-
5654741 

Signaling by FGFR3 7.51e-03 16.82 

Age up R-HSA-
8853334 

Signaling by FGFR3 fusions in 
cancer 

7.30e-03 207.35 



 
  198 

Age up R-HSA-
1266738 

Developmental Biology 6.80e-03 3.09 

Age up R-HSA-
112399 

IRS-mediated signalling 1.11e-02 13.6 

Age up R-HSA-
2029482 

Regulation of actin dynamics 
for phagocytic cup formation 

6.76e-03 8.55 

Age up R-HSA-
1500931 

Cell-Cell communication 7.61e-03 8.18 

Age up R-HSA-
2029480 

Fcgamma receptor (FCGR) 
dependent phagocytosis 

1.16e-02 6.95 

Age up R-HSA-
6783783 

Interleukin-10 signaling 1.88e-02 10.18 

Age up R-HSA-
9664433 

Leishmania parasite growth 
and survival 

1.16e-02 6.95 

Age up R-HSA-
2428928 

IRS-related events triggered 
by IGF1R 

1.24e-02 12.78 

Age up R-HSA-
5690714 

CD22 mediated BCR 
regulation 

1.35e-02 12.23 

Age up R-HSA-
2428924 

IGF1R signaling cascade 1.35e-02 12.23 

Age up R-HSA-74751 Insulin receptor signalling 
cascade 

1.35e-02 12.23 

Age up R-HSA-
2404192 

Signaling by Type 1 Insulin-
like Growth Factor 1 Receptor 
(IGF1R) 

1.38e-02 12.06 

Age down R-HSA-73886 Chromosome Maintenance 4.02e-04 8.66 
Age down R-HSA-

4839726 
Chromatin organization 4.72e-04 5.78 

Age down R-HSA-
3247509 

Chromatin modifying 
enzymes 

4.72e-04 5.78 

Age down R-HSA-
8939211 

ESR-mediated signaling 4.89e-04 5.73 

Age down R-HSA-
8878171 

Transcriptional regulation by 
RUNX1 

5.16e-04 5.66 

Age down R-HSA-
9609646 

HCMV Infection 6.22e-04 5.42 

Age down R-HSA-
195258 

RHO GTPase Effectors 1.42e-03 4.47 

Age down R-HSA-75153 Apoptotic execution phase 3.74e-04 16.38 
Age down R-HSA-

195721 
Signaling by WNT 1.54e-03 4.38 

Age down R-HSA-
157118 

Signaling by NOTCH 5.07e-04 5.69 

Age down R-HSA-
201681 

TCF dependent signaling in 
response to WNT 

2.21e-04 6.88 

Age down R-HSA-69306 DNA Replication 7.02e-05 8.9 
Age down R-HSA-

157579 
Telomere Maintenance 1.73e-04 10.93 

Age down R-HSA-73884 Base Excision Repair 1.24e-04 11.98 
Age down R-HSA-

212165 
Epigenetic regulation of gene 
expression 

9.20e-05 8.38 
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Age down R-HSA-
9610379 

HCMV Late Events 8.50e-05 8.53 

Age down R-HSA-
9018519 

Estrogen-dependent gene 
expression 

4.53e-05 9.82 

Age down R-HSA-
1474165 

Reproduction 3.40e-05 10.46 

Age down R-HSA-
9816359 

Maternal to zygotic transition 
(MZT) 

2.68e-05 11.02 

Age down R-HSA-68875 Mitotic Prophase 2.42e-05 11.28 
TumorVsNormal 
up 

R-HSA-
9725554 

Differentiation of 
keratinocytes in interfollicular 
epidermis in mammalian skin 

6.98e-05 4.13 

TumorVsNormal 
up 

R-HSA-69273 Cyclin A/B1/B2 associated 
events during G2/M transition 

3.19e-04 4.57 

TumorVsNormal 
up 

R-HSA-
176417 

Phosphorylation of Emi1 2.09e-04 19.4 

TumorVsNormal 
up 

R-HSA-69306 DNA Replication 1.74e-04 2.06 

TumorVsNormal 
up 

R-HSA-
1592389 

Activation of Matrix 
Metalloproteinases 

1.34e-04 4.67 

TumorVsNormal 
up 

R-HSA-
6805567 

Keratinization 1.32e-04 1.88 

TumorVsNormal 
up 

R-HSA-
6811434 

COPI-dependent Golgi-to-ER 
retrograde traffic 

1.19e-04 2.54 

TumorVsNormal 
up 

R-HSA-69481 G2/M Checkpoints 1.08e-04 2.19 

TumorVsNormal 
up 

R-HSA-69275 G2/M Transition 9.92e-05 1.94 

TumorVsNormal 
up 

R-HSA-
9734767 

Developmental Cell Lineages 6.98e-05 4.13 

TumorVsNormal 
up 

R-HSA-
1474228 

Degradation of the 
extracellular matrix 

6.59e-05 2.28 

TumorVsNormal 
up 

R-HSA-
983705 

Signaling by the B Cell 
Receptor (BCR) 

3.83e-13 3.77 

TumorVsNormal 
up 

R-HSA-
983189 

Kinesins 6.06e-05 3.32 

TumorVsNormal 
up 

R-HSA-69190 DNA strand elongation 5.60e-05 4.77 

TumorVsNormal 
up 

R-HSA-
453274 

Mitotic G2-G2/M phases 5.05e-05 2 

TumorVsNormal 
up 

R-HSA-68962 Activation of the pre-
replicative complex 

3.47e-05 5.15 

TumorVsNormal 
up 

R-HSA-69239 Synthesis of DNA 3.21e-05 2.49 

TumorVsNormal 
up 

R-HSA-
5653656 

Vesicle-mediated transport 2.21e-05 1.39 

TumorVsNormal 
up 

R-HSA-68886 M Phase 2.16e-05 1.66 

TumorVsNormal 
up 

R-HSA-
176974 

Unwinding of DNA 1.79e-05 16.33 

MaleVsFemale up R-HSA-
3214842 

HDMs demethylate histones 3.55e-04 77.15 
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MaleVsFemale up R-HSA-
6809371 

Formation of the cornified 
envelope 

2.36e-04 27.36 

MaleVsFemale up R-HSA-
6805567 

Keratinization 9.87e-04 16.43 
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A.5 Reactome Pathways for Smoking Dataset (Top 20) 

Comparison Reacto
me:id Pathway 

Adj. p-
value 

Odds 
ratio 

Age down R-HSA-
2168880 

Scavenging of heme from plasma 6.81e-03 inf 

Age down R-HSA-
2173782 

Binding and Uptake of Ligands by 
Scavenger Receptors 

1.08e-02 inf 

Age up R-HSA-
5690714 

CD22 mediated BCR regulation 8.77e-15 199.20 

Age up R-HSA-
977606 

Regulation of Complement cascade 1.63e-14 127.96 

Age up R-HSA-
166658 

Complement cascade 4.55e-14 112.99 

Age up R-HSA-
2871837 

FCERI mediated NF-kB activation 1.01e-11 75.63 

Age up R-HSA-
2029481 

FCGR activation 1.51e-13 133.82 

Age up R-HSA-
2168880 

Scavenging of heme from plasma 1.90e-13 129.69 

Age up R-HSA-
2730905 

Role of LAT2/NTAL/LAB on calcium 
mobilization 

2.05e-13 128.37 

Age up R-HSA-
166786 

Creation of C4 and C2 activators 2.74e-13 123.34 

Age up R-HSA-
166663 

Initial triggering of complement 5.08e-13 113.34 

Age up R-HSA-
2871796 

FCERI mediated MAPK activation 6.59e-13 109.39 

Age up R-HSA-
173623 

Classical antibody-mediated 
complement activation 

9.39e-14 142.92 

Age up R-HSA-
2871809 

FCERI mediated Ca+2 mobilization 9.02e-13 104.82 

Age up R-HSA-
9664323 

FCGR3A-mediated IL10 synthesis 1.82e-12 95.26 

Age up R-HSA-
198933 

Immunoregulatory interactions 
between a Lymphoid and a non-
Lymphoid cell 

2.92e-12 68.62 

Age up R-HSA-
202733 

Cell surface interactions at the 
vascular wall 

3.86e-12 66.36 

Age up R-HSA-
9664407 

Parasite infection 4.27e-12 84.91 

Age up R-HSA-
9664422 

FCGR3A-mediated phagocytosis 4.27e-12 84.91 

Age up R-HSA-
9664417 

Leishmania phagocytosis 4.27e-12 84.91 

Age up R-HSA-
2029482 

Regulation of actin dynamics for 
phagocytic cup formation 

4.49e-12 84.34 

Age up R-HSA-
2173782 

Binding and Uptake of Ligands by 
Scavenger Receptors 

7.30e-12 78.99 

MaleVsFemal
e up 

R-HSA-
3214842 

HDMs demethylate histones 3.55e-04 70.13 
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TissueXSex 
down 

R-HSA-
5619045 

Defective SLC34A2 causes 
pulmonary alveolar microlithiasis 
(PALM) 

9.63e-04 1402.50 

TissueXSex 
down 

R-HSA-
5683826 

Surfactant metabolism 1.11e-04 148.97 

TissueXSex 
down 

R-HSA-
5687583 

Defective SLC34A2 causes PALM 9.63e-04 1402.50 

TissueXSex 
down 

R-HSA-
427652 

Sodium-coupled phosphate 
cotransporters 

2.25e-03 467.33 

TissueXSex 
down 

R-HSA-
5687613 

Diseases associated with surfactant 
metabolism 

5.13e-03 186.78 

TissueXSex 
down 

R-HSA-
427589 

Type II Na+/Pi cotransporters 1.60e-03 701.12 

TissueXSex 
up 

R-HSA-
9832991 

Formation of the posterior neural 
plate 

8.08e-07 1869.17 

TissueXSex 
up 

R-HSA-
9758941 

Gastrulation 1.29e-04 126.31 

TissueXSex 
up 

R-HSA-
449147 

Signaling by Interleukins 1.79e-03 32.23 

TissueXSex 
up 

R-HSA-
2892245 

POU5F1 (OCT4), SOX2, NANOG 
repress genes related to 
differentiation 

1.28e-03 inf 

TissueXSex 
up 

R-HSA-
9834899 

Specification of the neural plate 
border 

3.08e-03 inf 

TissueXSex 
up 

R-HSA-
452723 

Transcriptional regulation of 
pluripotent stem cells 

8.35e-06 520.19 

TissueXSex 
up 

R-HSA-
9754189 

Germ layer formation at gastrulation 2.38e-06 1018.64 

TissueXSex 
up 

R-HSA-
9823739 

Formation of the anterior neural 
plate 

1.49e-06 1318.82 

TissueXSex 
up 

R-HSA-
2892247 

POU5F1 (OCT4), SOX2, NANOG 
activate genes related to 
proliferation 

2.70e-03 inf 

TissueXSex 
up 

R-HSA-
8986944 

Transcriptional Regulation by MECP2 1.28e-02 inf 

TissueXSex 
up 

R-HSA-
1280215 

Cytokine Signaling in Immune 
system 

4.98e-03 18.47 

TissueXSex 
up 

R-HSA-
3769402 

Deactivation of the beta-catenin 
transactivating complex 

5.64e-03 inf 

TissueXSex 
up 

R-HSA-
195721 

Signaling by WNT 4.21e-02 inf 

TissueXSex 
up 

R-HSA-
168256 

Immune System 2.92e-02 6.44 

TissueXSex 
up 

R-HSA-
201681 

TCF dependent signaling in response 
to WNT 

2.74e-02 inf 

TissueXSex 
up 

R-HSA-
6785807 

Interleukin-4 and Interleukin-13 
signaling 

1.84e-04 105.44 

TissueXSex 
up 

R-HSA-
1266738 

Developmental Biology 1.21e-02 11.10 

TissueXSex 
up 

R-HSA-
9856649 

Transcriptional and post-
translational regulation of MITF-M 
expression and activity 

5.77e-03 inf 
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TissueXSex 
up 

R-HSA-
9730414 

MITF-M-regulated melanocyte 
development 

2.13e-02 inf 

TumorVsNor
mal up 

R-HSA-
2029481 

FCGR activation 1.11e-16 24.14 

TumorVsNor
mal up 

R-HSA-
9664417 

Leishmania phagocytosis 1.11e-16 10.65 

TumorVsNor
mal up 

R-HSA-
5690714 

CD22 mediated BCR regulation 1.11e-16 33.96 

TumorVsNor
mal up 

R-HSA-
69278 

Cell Cycle, Mitotic 1.11e-16 3.64 

TumorVsNor
mal up 

R-HSA-
1640170 

Cell Cycle 1.11e-16 3.08 

TumorVsNor
mal up 

R-HSA-
69620 

Cell Cycle Checkpoints 1.11e-16 4.24 

TumorVsNor
mal up 

R-HSA-
9664323 

FCGR3A-mediated IL10 synthesis 1.11e-16 12.77 

TumorVsNor
mal up 

R-HSA-
9664422 

FCGR3A-mediated phagocytosis 1.11e-16 10.65 

TumorVsNor
mal up 

R-HSA-
9664407 

Parasite infection 1.11e-16 10.65 

TumorVsNor
mal up 

R-HSA-
212300 

PRC2 methylates histones and DNA 5.81e-11 10.54 

TumorVsNor
mal up 

R-HSA-
2730905 

Role of LAT2/NTAL/LAB on calcium 
mobilization 

1.11e-16 18.85 

TumorVsNor
mal up 

R-HSA-
2029480 

Fcgamma receptor (FCGR) 
dependent phagocytosis 

1.11e-16 7.74 

TumorVsNor
mal up 

R-HSA-
983705 

Signaling by the B Cell Receptor 
(BCR) 

1.11e-16 5.72 

TumorVsNor
mal up 

R-HSA-
173623 

Classical antibody-mediated 
complement activation 

1.11e-16 28.07 

TumorVsNor
mal up 

R-HSA-
166786 

Creation of C4 and C2 activators 1.11e-16 20.34 

TumorVsNor
mal up 

R-HSA-
2029482 

Regulation of actin dynamics for 
phagocytic cup formation 

1.11e-16 10.54 

TumorVsNor
mal up 

R-HSA-
9662851 

Anti-inflammatory response 
favouring Leishmania parasite 
infection 

1.11e-16 7.74 

TumorVsNor
mal up 

R-HSA-
9664433 

Leishmania parasite growth and 
survival 

1.11e-16 7.74 

TumorVsNor
mal up 

R-HSA-
2454202 

Fc epsilon receptor (FCERI) signaling 1.11e-16 5.31 

TumorVsNor
mal up 

R-HSA-
166663 

Initial triggering of complement 1.11e-16 17.27 
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A.6 Gene Ontology Biological Processes (GO:BP) for Full Dataset 

Comparison GO:id Biological Process 
Adj. p-
value 

Odds 
ratio 

TissueXSex up GO:0045109 intermediate filament organization 3.40e-11 457.45 
TissueXSex up GO:0045104 intermediate filament cytoskeleton 

organization 
2.77e-10 345.65 

TissueXSex up GO:0045103 intermediate filament-based 
process 

3.02e-10 341.67 

TissueXSex up GO:0008544 epidermis development 3.04e-08 107.97 
TissueXSex up GO:0030216 keratinocyte differentiation 4.54e-08 176.73 
TissueXSex up GO:0030855 epithelial cell differentiation 7.31e-07 65.97 
TissueXSex up GO:0009913 epidermal cell differentiation 7.47e-07 122.56 
TissueXSex up GO:0009888 tissue development 2.17e-06 43.04 
TissueXSex up GO:0043588 skin development 5.36e-06 94.66 
TissueXSex up GO:0060429 epithelium development 1.05e-05 45.82 
TissueXSex up GO:0031424 keratinization 4.85e-03 157.43 
TissueXSex up GO:0097435 supramolecular fiber organization 8.46e-03 35.26 
TissueXSex up GO:0018149 peptide cross-linking 8.68e-03 353.3 
TissueXSex up GO:0009753 response to jasmonic acid 1.42e-02 2827.28 
TissueXSex up GO:0071395 cellular response to jasmonic acid 

stimulus 
1.42e-02 2827.28 

TissueXSex up GO:0048513 animal organ development 3.07e-02 20.76 
TissueXSex 
down 

GO:0007585 respiratory gaseous exchange by 
respiratory system 

4.73e-02 148.66 

Age up GO:0008544 epidermis development 9.65e-07 86.72 
Age up GO:0045109 intermediate filament organization 4.39e-05 225.75 
Age up GO:0031424 keratinization 7.92e-05 199.34 
Age up GO:0030216 keratinocyte differentiation 1.02e-04 113.12 
Age up GO:0043588 skin development 1.50e-04 74.7 
Age up GO:0045104 intermediate filament cytoskeleton 

organization 
1.58e-04 172.43 

Age up GO:0045103 intermediate filament-based 
process 

1.66e-04 170.51 

Age up GO:0009913 epidermal cell differentiation 8.08e-04 78.73 
Age up GO:0019730 antimicrobial humoral response 8.29e-04 121.73 
Age up GO:0030855 epithelial cell differentiation 3.25e-03 38.22 
Age up GO:0009888 tissue development 1.89e-02 22.23 
Age up GO:0006959 humoral immune response 2.13e-02 61.49 
Age up GO:0006958 complement activation, classical 

pathway 
2.80e-02 223.09 

Age down GO:0006334 nucleosome assembly 1.01e-09 176.21 
Age down GO:0034728 nucleosome organization 4.38e-09 148.2 
Age down GO:0061644 protein localization to CENP-A 

containing chromatin 
2.44e-07 715.13 

Age down GO:0065004 protein-DNA complex assembly 7.12e-07 81.42 



 
  205 

Age down GO:0071168 protein localization to chromatin 1.77e-06 220.22 
Age down GO:0006396 RNA processing 2.39e-06 23.04 
Age down GO:0071459 protein localization to chromosome, 

centromeric region 
1.82e-05 265.54 

Age down GO:0045653 negative regulation of 
megakaryocyte differentiation 

6.61e-05 483.1 

Age down GO:0034502 protein localization to chromosome 1.54e-04 99.49 
Age down GO:0045652 regulation of megakaryocyte 

differentiation 
1.10e-03 219.53 

Age down GO:0006325 chromatin organization 2.88e-03 26.27 
Age down GO:0006338 chromatin remodeling 4.62e-03 28.29 
Age down GO:0016070 RNA metabolic process 6.92e-03 15.55 
Age down GO:0071824 protein-DNA complex organization 8.02e-03 23.36 
Age down GO:0030219 megakaryocyte differentiation 1.09e-02 118.72 
Age down GO:0051276 chromosome organization 3.06e-02 25.53 
Age down GO:0090304 nucleic acid metabolic process 3.50e-02 14.27 
Age down GO:0032200 telomere organization 4.53e-02 49.86 
TumorVsNorm
al up 

GO:0000278 mitotic cell cycle 3.20e-26 12.5 

TumorVsNorm
al up 

GO:1903047 mitotic cell cycle process 4.64e-26 13.52 

TumorVsNorm
al up 

GO:0022402 cell cycle process 2.25e-22 10.11 

TumorVsNorm
al up 

GO:0140014 mitotic nuclear division 4.87e-22 20.88 

TumorVsNorm
al up 

GO:0007059 chromosome segregation 6.11e-22 16.34 

TumorVsNorm
al up 

GO:0016064 immunoglobulin mediated immune 
response 

9.18e-22 25.37 

TumorVsNorm
al up 

GO:0019724 B cell mediated immunity 1.83e-21 24.89 

TumorVsNorm
al up 

GO:0002250 adaptive immune response 2.66e-21 12.28 

TumorVsNorm
al up 

GO:0051301 cell division 1.21e-20 12.76 

TumorVsNorm
al up 

GO:0050896 response to stimulus 1.49e-20 8.12 

TumorVsNorm
al up 

GO:0098813 nuclear chromosome segregation 6.84e-20 18.17 

TumorVsNorm
al up 

GO:0000819 sister chromatid segregation 2.43e-19 21.73 

TumorVsNorm
al up 

GO:0051276 chromosome organization 4.22e-19 12.47 

TumorVsNorm
al up 

GO:0000070 mitotic sister chromatid 
segregation 

1.17e-18 24.14 

TumorVsNorm
al up 

GO:0000280 nuclear division 1.54e-18 14.54 

TumorVsNorm
al up 

GO:0007049 cell cycle 9.12e-17 8.1 

TumorVsNorm
al up 

GO:0048285 organelle fission 9.31e-17 13.15 
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TumorVsNorm
al up 

GO:0044770 cell cycle phase transition 1.09e-16 12.63 

TumorVsNorm
al up 

GO:0051983 regulation of chromosome 
segregation 

1.63e-15 27.87 

TumorVsNorm
al up 

GO:0010564 regulation of cell cycle process 5.52e-15 10.57 

TumorVsNorm
al down 

GO:0040011 locomotion 4.59e-45 6.18 

TumorVsNorm
al down 

GO:0048870 cell motility 4.71e-45 5.42 

TumorVsNorm
al down 

GO:0016477 cell migration 3.08e-44 5.66 

TumorVsNorm
al down 

GO:0051239 regulation of multicellular 
organismal process 

5.93e-44 4.48 

TumorVsNorm
al down 

GO:0030334 regulation of cell migration 3.84e-42 6.79 

TumorVsNorm
al down 

GO:2000145 regulation of cell motility 2.85e-41 6.53 

TumorVsNorm
al down 

GO:0040012 regulation of locomotion 6.90e-41 6.38 

TumorVsNorm
al down 

GO:0001944 vasculature development 3.28e-39 7.28 

TumorVsNorm
al down 

GO:0072359 circulatory system development 3.76e-37 5.89 

TumorVsNorm
al down 

GO:0001568 blood vessel development 3.79e-37 7.23 

TumorVsNorm
al down 

GO:0048856 anatomical structure development 7.86e-36 3.63 

TumorVsNorm
al down 

GO:0007155 cell adhesion 1.69e-34 5.11 

TumorVsNorm
al down 

GO:0007166 cell surface receptor signaling 
pathway 

5.01e-33 4.15 

TumorVsNorm
al down 

GO:0009653 anatomical structure 
morphogenesis 

9.95e-33 4.19 

TumorVsNorm
al down 

GO:0032501 multicellular organismal process 4.03e-32 3.44 

TumorVsNorm
al down 

GO:0007275 multicellular organism development 5.09e-32 3.68 

TumorVsNorm
al down 

GO:0030335 positive regulation of cell migration 1.20e-31 7.73 

TumorVsNorm
al down 

GO:2000147 positive regulation of cell motility 1.62e-31 7.51 

TumorVsNorm
al down 

GO:0040017 positive regulation of locomotion 2.25e-31 7.4 

TumorVsNorm
al down 

GO:0048646 anatomical structure formation 
involved in morphogenesis 

5.15e-31 5.37 
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A.7 Gene Ontology Biological Processes (GO:BP) for Smoking 

Dataset 

Comparison GO:id Biological Process 
Adj. p-
value 

Odds 
ratio 

Age up GO:0002250 adaptive immune response 4.08e-11 264.30 
Age up GO:0006955 immune response 1.92e-06 95.59 
Age up GO:0002460 adaptive immune response 

based on somatic 
recombination of immune 
receptors built from 
immunoglobulin superfamily 
domains 

2.20e-06 167.22 

Age up GO:0016064 immunoglobulin mediated 
immune response 

2.87e-06 237.37 

Age up GO:0019724 B cell mediated immunity 3.13e-06 233.81 
Age up GO:0002376 immune system process 6.79e-05 67.56 
Age up GO:0002449 lymphocyte mediated 

immunity 
8.63e-05 132.10 

Age up GO:0002252 immune effector process 1.59e-04 88.65 
Age up GO:0002443 leukocyte mediated 

immunity 
3.61e-04 103.15 

FormerVsNever 
Tumor up 

GO:0071395 cellular response to 
jasmonic acid stimulus 

2.15e-04 17675.7
5 

FormerVsNever 
Tumor up 

GO:0009753 response to jasmonic acid 2.15e-04 17675.7
5 

FormerVsNever 
Tumor up 

GO:0044597 daunorubicin metabolic 
process 

1.29e-03 5049.86 

FormerVsNever 
Tumor up 

GO:0030647 aminoglycoside antibiotic 
metabolic process 

1.61e-03 4418.56 

FormerVsNever 
Tumor up 

GO:0044598 doxorubicin metabolic 
process 

1.61e-03 4418.56 

FormerVsNever 
Tumor up 

GO:0030638 polyketide metabolic 
process 

1.61e-03 4418.56 

FormerVsNever 
Tumor up 

GO:0042448 progesterone metabolic 
process 

4.87e-03 2356.33 

FormerVsNever 
Tumor up 

GO:0016137 glycoside metabolic process 6.81e-03 1963.53 

FormerVsNever 
Tumor up 

GO:1902644 tertiary alcohol metabolic 
process 

8.27e-03 1767.12 

FormerVsNever 
Tumor up 

GO:0071398 cellular response to fatty 
acid 

2.13e-02 1070.79 

FormerVsNever 
Tumor up 

GO:0008207 C21-steroid hormone 
metabolic process 

2.51e-02 981.51 

FormerVsNever 
Tumor up 

GO:1901661 quinone metabolic process 3.08e-02 883.31 

FormerVsNever 
Tumor up 

GO:0006693 prostaglandin metabolic 
process 

4.03e-02 768.03 

FormerVsNever 
Tumor up 

GO:0006692 prostanoid metabolic 
process 

4.20e-02 751.68 
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CurrentVsForme
r Normal up 

GO:0009692 ethylene metabolic process 4.95e-02 inf 

CurrentVsForme
r Normal up 

GO:0017143 insecticide metabolic 
process 

4.95e-02 inf 

CurrentVsForme
r Normal up 

GO:0019341 dibenzo-p-dioxin catabolic 
process 

4.95e-02 inf 

CurrentVsNever 
Tumor down 

GO:0001580 detection of chemical 
stimulus involved in sensory 
perception of bitter taste 

1.51e-03 389.66 

CurrentVsNever 
Tumor down 

GO:0050913 sensory perception of bitter 
taste 

2.23e-03 339.68 

CurrentVsNever 
Tumor down 

GO:0050912 detection of chemical 
stimulus involved in sensory 
perception of taste 

2.40e-03 331.18 

CurrentVsNever 
Tumor down 

GO:0050909 sensory perception of taste 9.25e-03 206.92 

TumorVsNormal 
down 

GO:0048856 anatomical structure 
development 

1.02e-59 5.62 

TumorVsNormal 
down 

GO:0051239 regulation of multicellular 
organismal process 

4.28e-57 6.47 

TumorVsNormal 
down 

GO:0048870 cell motility 1.23e-55 7.75 

TumorVsNormal 
down 

GO:0032501 multicellular organismal 
process 

2.00e-53 5.28 

TumorVsNormal 
down 

GO:0032502 developmental process 3.59e-53 5.35 

TumorVsNormal 
down 

GO:0007275 multicellular organism 
development 

1.42e-52 5.61 

TumorVsNormal 
down 

GO:0016477 cell migration 6.95e-52 7.92 

TumorVsNormal 
down 

GO:0009653 anatomical structure 
morphogenesis 

4.51e-48 6.22 

TumorVsNormal 
down 

GO:0001944 vasculature development 2.05e-47 10.46 

TumorVsNormal 
down 

GO:0048731 system development 2.31e-47 5.59 

TumorVsNormal 
down 

GO:0072359 circulatory system 
development 

5.09e-47 8.53 

TumorVsNormal 
down 

GO:0040011 locomotion 1.85e-46 8.16 

TumorVsNormal 
down 

GO:0001568 blood vessel development 3.99e-46 10.54 

TumorVsNormal 
down 

GO:0050896 response to stimulus 1.34e-45 5.03 

TumorVsNormal 
down 

GO:0007155 cell adhesion 5.88e-43 7.24 

TumorVsNormal 
down 

GO:0007166 cell surface receptor 
signaling pathway 

3.71e-42 5.85 

TumorVsNormal 
down 

GO:0030334 regulation of cell migration 3.16e-41 8.72 

TumorVsNormal 
down 

GO:0040012 regulation of locomotion 4.50e-41 8.30 
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TumorVsNormal 
down 

GO:2000145 regulation of cell motility 5.08e-41 8.45 

TumorVsNormal 
down 

GO:0051716 cellular response to stimulus 2.01e-40 4.89 

TumorVsNormal 
up 

GO:0002250 adaptive immune response 2.34e-38 18.52 

TumorVsNormal 
up 

GO:0016064 immunoglobulin mediated 
immune response 

8.24e-30 35.52 

TumorVsNormal 
up 

GO:0019724 B cell mediated immunity 1.73e-29 34.84 

TumorVsNormal 
up 

GO:1903047 mitotic cell cycle process 7.02e-25 14.34 

TumorVsNormal 
up 

GO:0098813 nuclear chromosome 
segregation 

4.37e-24 22.58 

TumorVsNormal 
up 

GO:0007059 chromosome segregation 1.33e-23 18.75 

TumorVsNormal 
up 

GO:0140014 mitotic nuclear division 3.89e-23 23.91 

TumorVsNormal 
up 

GO:0000278 mitotic cell cycle 8.39e-23 12.58 

TumorVsNormal 
up 

GO:0000070 mitotic sister chromatid 
segregation 

1.13e-22 30.73 

TumorVsNormal 
up 

GO:0051276 chromosome organization 3.90e-22 14.58 

TumorVsNormal 
up 

GO:0000819 sister chromatid segregation 4.13e-22 26.36 

TumorVsNormal 
up 

GO:0050896 response to stimulus 1.72e-20 7.72 

TumorVsNormal 
up 

GO:0022402 cell cycle process 3.44e-20 10.26 

TumorVsNormal 
up 

GO:0000280 nuclear division 5.02e-20 16.58 

TumorVsNormal 
up 

GO:0002460 adaptive immune response 
based on somatic 
recombination of immune 
receptors built from 
immunoglobulin superfamily 
domains 

9.91e-20 18.13 

TumorVsNormal 
up 

GO:0006955 immune response 3.57e-19 8.64 

TumorVsNormal 
up 

GO:0044770 cell cycle phase transition 5.81e-19 14.61 

TumorVsNormal 
up 

GO:0002449 lymphocyte mediated 
immunity 

7.52e-19 18.05 

TumorVsNormal 
up 

GO:0051301 cell division 1.65e-18 13.08 

TumorVsNormal 
up 

GO:0048285 organelle fission 7.89e-18 14.75 
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A.8 Gene Ontology Cellular Components (GO:CC) for Full 

Dataset (Top 20) 

Comparison GO:id Cellular Components 
Adj. p-
value 

Odds 
ratio 

TissueXSex up GO:0001533 cornified envelope 2.19e-15 706.34 
TissueXSex up GO:0005882 intermediate filament 2.12e-08 141.3 
TissueXSex up GO:0045111 intermediate filament 

cytoskeleton 
7.13e-08 120.56 

TissueXSex up GO:0045095 keratin filament 2.79e-07 219.23 
TissueXSex up GO:0030057 desmosome 5.19e-06 534.3 
TissueXSex up GO:0005911 cell-cell junction 3.38e-04 47.97 
TissueXSex up GO:0099512 supramolecular fiber 3.70e-04 33.32 
TissueXSex up GO:0099081 supramolecular polymer 3.94e-04 33.06 
TissueXSex up GO:0005576 extracellular region 4.44e-04 23.04 
TissueXSex up GO:0099513 polymeric cytoskeletal 

fiber 
5.32e-04 36.83 

TissueXSex up GO:0070161 anchoring junction 1.24e-03 32.76 
TissueXSex up GO:0005829 cytosol 2.92e-03 20.27 
TissueXSex up GO:0099080 supramolecular complex 4.33e-03 24.44 
TissueXSex up GO:0005615 extracellular space 5.53e-03 19.02 
TissueXSex up GO:0005737 cytoplasm 1.19e-02 37.89 
TissueXSex down GO:0042599 lamellar body 1.10e-07 1308.8

3 
TissueXSex down GO:0005771 multivesicular body 5.38e-05 237.79 
TissueXSex down GO:0097208 alveolar lamellar body 2.29e-03 1413.6

8 
TissueXSex down GO:0097486 multivesicular body 

lumen 
2.29e-03 1413.6

8 
TissueXSex down GO:0031982 vesicle 2.72e-03 20.05 
TissueXSex down GO:0031906 late endosome lumen 3.91e-03 1009.7

4 
TissueXSex down GO:0005576 extracellular region 4.65e-03 18.99 
TissueXSex down GO:0045334 clathrin-coated 

endocytic vesicle 
8.80e-03 131.15 

TissueXSex down GO:0030141 secretory granule 1.17e-02 29.41 
TissueXSex down GO:0005770 late endosome 2.04e-02 50.45 
TissueXSex down GO:0005615 extracellular space 2.15e-02 17.06 
TissueXSex down GO:0099503 secretory vesicle 3.10e-02 24.56 
Age up GO:0042571 immunoglobulin 

complex, circulating 
4.74e-05 1060.1

2 
Age up GO:0005576 extracellular region 6.00e-05 24.49 
Age up GO:0005615 extracellular space 1.20e-04 23.65 
Age up GO:0001533 cornified envelope 1.31e-04 214.02 
Age up GO:0019814 immunoglobulin 

complex 
1.69e-04 104.31 

Age up GO:0005882 intermediate filament 9.92e-04 71.92 
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Age up GO:0045111 intermediate filament 
cytoskeleton 

2.08e-03 61.49 

Age up GO:0071735 IgG immunoglobulin 
complex 

7.42e-03 906.12 

Age up GO:0045095 keratin filament 4.08e-02 89.16 
Age down GO:0000786 nucleosome 6.88e-14 195.56 
Age down GO:0005730 nucleolus 1.91e-09 30.15 
Age down GO:0061638 CENP-A containing 

chromatin 
2.17e-08 715.13 

Age down GO:0043505 CENP-A containing 
nucleosome 

2.17e-08 715.13 

Age down GO:0034506 chromosome, 
centromeric core 
domain 

2.94e-08 664.04 

Age down GO:0043232 intracellular non-
membrane-bounded 
organelle 

1.21e-07 22.55 

Age down GO:0043228 non-membrane-
bounded organelle 

1.22e-07 22.54 

Age down GO:0005634 nucleus 3.67e-07 26.42 
Age down GO:0031981 nuclear lumen 6.94e-07 20.02 
Age down GO:0043233 organelle lumen 5.24e-05 16.3 
Age down GO:0031974 membrane-enclosed 

lumen 
5.24e-05 16.3 

Age down GO:0070013 intracellular organelle 
lumen 

5.24e-05 16.3 

Age down GO:0000785 chromatin 2.82e-03 17.56 
Age down GO:0032993 protein-DNA complex 4.44e-03 16.7 
Age down GO:0000775 chromosome, 

centromeric region 
1.75e-02 36.48 

Age down GO:0043231 intracellular membrane-
bounded organelle 

4.40e-02 16.84 

Age down GO:0000781 chromosome, telomeric 
region 

4.69e-02 43.3 

TumorVsNormal up GO:0019814 immunoglobulin 
complex 

1.41e-75 103.58 

TumorVsNormal up GO:0005576 extracellular region 2.15e-38 9.31 
TumorVsNormal up GO:0005615 extracellular space 7.50e-27 8.3 
TumorVsNormal up GO:0070062 extracellular exosome 3.40e-16 7.54 
TumorVsNormal up GO:1903561 extracellular vesicle 4.16e-16 7.51 
TumorVsNormal up GO:0043230 extracellular organelle 4.35e-16 7.5 
TumorVsNormal up GO:0065010 extracellular membrane-

bounded organelle 
4.35e-16 7.5 

TumorVsNormal up GO:0098687 chromosomal region 3.60e-15 13.43 
TumorVsNormal up GO:0001533 cornified envelope 2.00e-14 47.64 
TumorVsNormal up GO:0000793 condensed chromosome 3.55e-14 15.58 
TumorVsNormal up GO:0000775 chromosome, 

centromeric region 
2.11e-13 15.83 
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TumorVsNormal up GO:0000779 condensed 
chromosome, 
centromeric region 

2.71e-13 19.33 

TumorVsNormal up GO:0005819 spindle 9.00e-12 11.44 
TumorVsNormal up GO:0005694 chromosome 1.65e-11 6.86 
TumorVsNormal up GO:0000776 kinetochore 6.53e-11 17.9 
TumorVsNormal up GO:0071944 cell periphery 8.14e-11 6.2 
TumorVsNormal up GO:0072686 mitotic spindle 1.03e-10 16.92 
TumorVsNormal up GO:0000940 outer kinetochore 4.50e-10 105.65 
TumorVsNormal up GO:0005737 cytoplasm 4.67e-10 8 
TumorVsNormal up GO:0099080 supramolecular complex 2.84e-09 6.91 
TumorVsNormal down GO:0071944 cell periphery 7.93e-48 3.87 
TumorVsNormal down GO:0005886 plasma membrane 3.95e-32 3.54 
TumorVsNormal down GO:0009986 cell surface 3.31e-24 5.33 
TumorVsNormal down GO:0005576 extracellular region 2.03e-21 3.38 
TumorVsNormal down GO:0062023 collagen-containing 

extracellular matrix 
1.55e-18 6.58 

TumorVsNormal down GO:0030312 external encapsulating 
structure 

1.59e-18 5.82 

TumorVsNormal down GO:0031012 extracellular matrix 4.22e-18 5.77 
TumorVsNormal down GO:0098552 side of membrane 6.62e-18 5.17 
TumorVsNormal down GO:0031982 vesicle 1.06e-17 3.27 
TumorVsNormal down GO:0009897 external side of plasma 

membrane 
2.31e-17 6.69 

TumorVsNormal down GO:0070161 anchoring junction 7.00e-17 4.66 
TumorVsNormal down GO:0005615 extracellular space 1.94e-13 3.18 
TumorVsNormal down GO:0031410 cytoplasmic vesicle 2.44e-12 3.27 
TumorVsNormal down GO:0097708 intracellular vesicle 3.18e-12 3.26 
TumorVsNormal down GO:0030141 secretory granule 4.47e-12 4.19 
TumorVsNormal down GO:0015629 actin cytoskeleton 9.18e-12 5.02 
TumorVsNormal down GO:0005911 cell-cell junction 2.61e-10 4.78 
TumorVsNormal down GO:0042995 cell projection 4.54e-10 3.17 
TumorVsNormal down GO:0099503 secretory vesicle 8.81e-10 3.75 
TumorVsNormal down GO:0030054 cell junction 9.91e-10 3.18 

 

  



 
  213 

A.9 Gene Ontology Cellular Components (GO:CC) for Smoking 

Dataset (Top 20) 

Comparison GO:id Cellular Components 
Adj. p-
value 

Odds 
ratio 

Age up  GO:0019814 immunoglobulin complex 6.64e-15 740.07 
Age up  GO:0005576 extracellular region 1.04e-08 221.71 
Age up  GO:0005615 extracellular space 2.42e-05 56.31 
Age up  GO:0071944 cell periphery 9.14e-05 67.44 
Age up  GO:0072562 blood microparticle 1.65e-04 194.39 
Age up  GO:0005886 plasma membrane 7.37e-03 31.17 
CurrentVsForme
r Normal up  

GO:0033181 plasma membrane proton-
transporting V-type ATPase 
complex 

3.69e-02 70708 

CurrentVsNever 
Tumor down  

GO:0031982 vesicle 6.79e-04 18.56 

CurrentVsNever 
Tumor down  

GO:0098552 side of membrane 4.06e-03 34.9 

CurrentVsNever 
Tumor down  

GO:0009897 external side of plasma 
membrane 

6.10e-03 49.34 

CurrentVsNever 
Tumor down  

GO:0070062 extracellular exosome 7.85e-03 19.03 

CurrentVsNever 
Tumor down  

GO:1903561 extracellular vesicle 8.44e-03 18.81 

CurrentVsNever 
Tumor down  

GO:0043230 extracellular organelle 8.47e-03 18.8 

CurrentVsNever 
Tumor down  

GO:0065010 extracellular membrane-
bounded organelle 

8.47e-03 18.8 

CurrentVsNever 
Tumor down  

GO:0005615 extracellular space 1.69e-02 14.88 

CurrentVsNever 
Tumor down  

GO:0005886 plasma membrane 1.92e-02 12.59 

CurrentVsNever 
Tumor down  

GO:0071944 cell periphery 4.00e-02 11.52 

CurrentVsNever 
Tumor down  

GO:0030659 cytoplasmic vesicle membrane 4.96e-02 20.32 

TumorVsNormal 
down  

GO:0071944 cell periphery 7.22e-72 6.01 

TumorVsNormal 
down  

GO:0005886 plasma membrane 6.95e-48 5.28 

TumorVsNormal 
down  

GO:0005576 extracellular region 1.30e-35 5.05 

TumorVsNormal 
down  

GO:0009986 cell surface 1.50e-33 7.96 

TumorVsNormal 
down  

GO:0030312 external encapsulating 
structure 

2.81e-28 9.19 

TumorVsNormal 
down  

GO:0031012 extracellular matrix 9.54e-28 9.1 

TumorVsNormal 
down  

GO:0062023 collagen-containing 
extracellular matrix 

4.43e-27 10.32 
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TumorVsNormal 
down  

GO:0031982 vesicle 1.18e-23 4.53 

TumorVsNormal 
down  

GO:0005615 extracellular space 2.46e-22 4.61 

TumorVsNormal 
down  

GO:0098552 side of membrane 7.83e-22 7.22 

TumorVsNormal 
down  

GO:0016020 membrane 1.92e-20 4.27 

TumorVsNormal 
down  

GO:0070161 anchoring junction 2.04e-20 6.42 

TumorVsNormal 
down  

GO:0009897 external side of plasma 
membrane 

1.05e-19 9.2 

TumorVsNormal 
down  

GO:0031410 cytoplasmic vesicle 1.36e-16 4.48 

TumorVsNormal 
down  

GO:0097708 intracellular vesicle 1.80e-16 4.47 

TumorVsNormal 
down  

GO:0042995 cell projection 4.96e-15 4.41 

TumorVsNormal 
down  

GO:0030141 secretory granule 7.81e-15 5.72 

TumorVsNormal 
down  

GO:0005737 cytoplasm 7.81e-15 4.24 

TumorVsNormal 
down  

GO:0120025 plasma membrane bounded 
cell projection 

4.75e-14 4.38 

TumorVsNormal 
down  

GO:0005911 cell-cell junction 9.94e-14 6.8 

TumorVsNormal 
up  

GO:0019814 immunoglobulin complex 9.08e-102 174.84 

TumorVsNormal 
up  

GO:0005576 extracellular region 4.28e-49 10.86 

TumorVsNormal 
up  

GO:0005615 extracellular space 3.21e-30 8.96 

TumorVsNormal 
up  

GO:0000786 nucleosome 1.08e-20 35.47 

TumorVsNormal 
up  

GO:0071944 cell periphery 3.00e-20 7.15 

TumorVsNormal 
up  

GO:0005694 chromosome 6.70e-19 8.38 

TumorVsNormal 
up  

GO:0098687 chromosomal region 3.33e-17 15.55 

TumorVsNormal 
up  

GO:0000775 chromosome, centromeric 
region 

1.27e-16 19.58 

TumorVsNormal 
up  

GO:0005886 plasma membrane 4.28e-14 6.36 

TumorVsNormal 
up  

GO:0000793 condensed chromosome 1.07e-13 16.63 

TumorVsNormal 
up  

GO:0000779 condensed chromosome, 
centromeric region 

1.35e-13 21.52 

TumorVsNormal 
up  

GO:0070062 extracellular exosome 1.58e-13 7.21 

TumorVsNormal 
up  

GO:1903561 extracellular vesicle 3.61e-13 7.13 
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TumorVsNormal 
up  

GO:0065010 extracellular membrane-
bounded organelle 

3.74e-13 7.12 

TumorVsNormal 
up  

GO:0043230 extracellular organelle 3.74e-13 7.12 

TumorVsNormal 
up  

GO:0000776 kinetochore 1.56e-12 21.28 

TumorVsNormal 
up  

GO:0000940 outer kinetochore 5.36e-12 141.69 

TumorVsNormal 
up  

GO:0072562 blood microparticle 2.57e-11 23.16 

TumorVsNormal 
up  

GO:0001533 cornified envelope 3.49e-10 39.76 

TumorVsNormal 
up  

GO:0005819 spindle 1.09e-09 11.15 
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A.10 Gene Ontology Molecular Functions (GO:MF) for Full 

Dataset 

Comparison GO:id Molecular Functions 
Adj. p-
value 

Odds 
ratio 

TissueXSex 
up  

GO:0030280 structural constituent of skin 
epidermis 

2.98e-07 517.98 

TissueXSex 
up  

GO:0005200 structural constituent of 
cytoskeleton 

1.04e-04 148.52 

TissueXSex 
up  

GO:0018636 phenanthrene 9,10-
monooxygenase activity 

1.66e-03 5654.64 

TissueXSex 
up  

GO:0047115 trans-1,2-dihydrobenzene-1,2-
diol dehydrogenase activity 

1.66e-03 5654.64 

TissueXSex 
up  

GO:0047718 indanol dehydrogenase activity 1.66e-03 5654.64 

TissueXSex 
up  

GO:0005198 structural molecule activity 1.90e-03 31.89 

TissueXSex 
up  

GO:0047086 ketosteroid monooxygenase 
activity 

5.51e-03 1884.83 

TissueXSex 
up  

GO:0047023 androsterone dehydrogenase 
activity 

1.54e-02 942.37 

TissueXSex 
up  

GO:0047044 androstan-3-alpha,17-beta-diol 
dehydrogenase activity 

1.98e-02 807.74 

TissueXSex 
up  

GO:0032052 bile acid binding 2.47e-02 706.76 

TissueXSex 
up  

GO:0019215 intermediate filament binding 3.62e-02 565.39 

TissueXSex 
up  

GO:0004032 alditol:NADP+ 1-oxidoreductase 
activity 

3.62e-02 565.39 

Age down  GO:0030527 structural constituent of 
chromatin 

2.17e-21 272.6 

Age down  GO:0005198 structural molecule activity 9.07e-10 21.96 
Age down  GO:0046982 protein heterodimerization activity 6.72e-09 45.27 
Age down  GO:0003676 nucleic acid binding 2.89e-06 5.75 
Age down  GO:0003677 DNA binding 7.25e-06 9.29 
Age down  GO:0046983 protein dimerization activity 4.51e-05 14.39 
Age down  GO:0097159 organic cyclic compound binding 2.49e-04 4.05 
Age down  GO:0031492 nucleosomal DNA binding 6.31e-04 143.17 
Age down  GO:0003723 RNA binding 1.03e-03 6.58 
Age down  GO:0031491 nucleosome binding 3.45e-03 79.03 
Age down  GO:0031490 chromatin DNA binding 1.82e-02 44.46 
Age up  GO:0005198 structural molecule activity 1.81e-04 35.47 
Age up  GO:0034987 immunoglobulin receptor binding 2.95e-04 706.71 
Age up  GO:0003823 antigen binding 8.81e-04 90.7 
Age up  GO:0030280 structural constituent of skin 

epidermis 
4.55e-03 256.91 

TumorVsNor
mal down  

GO:0005102 signaling receptor binding 2.61e-14 3.77 



 
  217 

TumorVsNor
mal down  

GO:0005178 integrin binding 3.33e-10 8.19 

TumorVsNor
mal down  

GO:0098772 molecular function regulator 
activity 

9.48e-10 3.2 

TumorVsNor
mal down  

GO:0030234 enzyme regulator activity 1.02e-09 3.55 

TumorVsNor
mal down  

GO:0005509 calcium ion binding 3.44e-09 4.1 

TumorVsNor
mal down  

GO:0005515 protein binding 4.36e-09 2.88 

TumorVsNor
mal down  

GO:0140375 immune receptor activity 5.88e-09 8.05 

TumorVsNor
mal down  

GO:0005201 extracellular matrix structural 
constituent 

4.06e-08 7.13 

TumorVsNor
mal down  

GO:0003779 actin binding 5.06e-08 4.64 

TumorVsNor
mal down  

GO:0019838 growth factor binding 1.61e-07 7.73 

TumorVsNor
mal down  

GO:0005488 binding 2.40e-07 2.95 

TumorVsNor
mal down  

GO:0030695 GTPase regulator activity 2.51e-07 4.35 

TumorVsNor
mal down  

GO:0060589 nucleoside-triphosphatase 
regulator activity 

2.51e-07 4.35 

TumorVsNor
mal down  

GO:0019955 cytokine binding 4.15e-07 7.22 

TumorVsNor
mal down  

GO:0008092 cytoskeletal protein binding 4.37e-07 3.51 

TumorVsNor
mal down  

GO:0060089 molecular transducer activity 3.56e-05 3.03 

TumorVsNor
mal down  

GO:0038023 signaling receptor activity 3.56e-05 3.03 

TumorVsNor
mal down  

GO:0008047 enzyme activator activity 3.88e-05 3.76 

TumorVsNor
mal down  

GO:0038024 cargo receptor activity 1.77e-04 7.71 

TumorVsNor
mal down  

GO:0019199 transmembrane receptor protein 
kinase activity 

1.94e-04 7.99 

TumorVsNor
mal down  

GO:0030246 carbohydrate binding 2.33e-04 4.51 

TumorVsNor
mal down  

GO:0005085 guanyl-nucleotide exchange factor 
activity 

2.78e-04 4.86 

TumorVsNor
mal down  

GO:0005096 GTPase activator activity 6.18e-04 4.48 

TumorVsNor
mal down  

GO:0005539 glycosaminoglycan binding 6.89e-04 4.61 

TumorVsNor
mal down  

GO:0008201 heparin binding 8.15e-04 5.23 

TumorVsNor
mal down  

GO:0140678 molecular function inhibitor 
activity 

8.78e-04 3.67 

TumorVsNor
mal down  

GO:0004713 protein tyrosine kinase activity 1.19e-03 5.55 
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TumorVsNor
mal down  

GO:0001540 amyloid-beta binding 1.26e-03 7.26 

TumorVsNor
mal down  

GO:0140677 molecular function activator 
activity 

1.29e-03 3.02 

TumorVsNor
mal down  

GO:0050839 cell adhesion molecule binding 1.52e-03 3.51 

TumorVsNor
mal down  

GO:0004888 transmembrane signaling receptor 
activity 

2.05e-03 2.93 

TumorVsNor
mal down  

GO:0004896 cytokine receptor activity 2.36e-03 6.42 

TumorVsNor
mal down  

GO:0071813 lipoprotein particle binding 3.07e-03 14.05 

TumorVsNor
mal down  

GO:0071814 protein-lipid complex binding 3.07e-03 14.05 

TumorVsNor
mal down  

GO:0019899 enzyme binding 4.01e-03 2.69 

TumorVsNor
mal down  

GO:0038187 pattern recognition receptor 
activity 

4.24e-03 11.85 

TumorVsNor
mal down  

GO:0044877 protein-containing complex 
binding 

5.44e-03 2.74 

TumorVsNor
mal down  

GO:0008289 lipid binding 6.42e-03 3.09 

TumorVsNor
mal down  

GO:0030169 low-density lipoprotein particle 
binding 

7.20e-03 21.7 

TumorVsNor
mal down  

GO:0042277 peptide binding 1.01e-02 3.86 

TumorVsNor
mal down  

GO:0051015 actin filament binding 1.39e-02 4.42 

TumorVsNor
mal down  

GO:0004714 transmembrane receptor protein 
tyrosine kinase activity 

1.62e-02 7.4 

TumorVsNor
mal down  

GO:0033218 amide binding 1.69e-02 3.59 

TumorVsNor
mal down  

GO:0019956 chemokine binding 1.90e-02 10.86 

TumorVsNor
mal down  

GO:1901681 sulfur compound binding 2.95e-02 3.95 

TumorVsNor
mal down  

GO:0050431 transforming growth factor beta 
binding 

3.46e-02 13.02 

TumorVsNor
mal down  

GO:0019865 immunoglobulin binding 3.46e-02 13.02 

TumorVsNor
mal down  

GO:0050840 extracellular matrix binding 3.48e-02 7.25 

TumorVsNor
mal down  

GO:0005021 vascular endothelial growth factor 
receptor activity 

3.57e-02 54.21 

TumorVsNor
mal down  

GO:0004672 protein kinase activity 4.15e-02 3.18 

TumorVsNor
mal up  

GO:0003823 antigen binding 2.40e-48 55.6 

TumorVsNor
mal up  

GO:0050839 cell adhesion molecule binding 1.01e-04 7.86 

TumorVsNor
mal up  

GO:0005515 protein binding 1.21e-04 10.02 
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TumorVsNor
mal up  

GO:0005488 binding 3.42e-04 16.35 

TumorVsNor
mal up  

GO:0030280 structural constituent of skin 
epidermis 

5.56e-04 30.4 

TumorVsNor
mal up  

GO:0045296 cadherin binding 2.34e-03 8.53 

TumorVsNor
mal up  

GO:0008017 microtubule binding 3.48e-03 9.01 

TumorVsNor
mal up  

GO:0005200 structural constituent of 
cytoskeleton 

5.79e-03 13.11 

TumorVsNor
mal up  

GO:0034987 immunoglobulin receptor binding 8.99e-03 52.47 

TumorVsNor
mal up  

GO:0016538 cyclin-dependent protein 
serine/threonine kinase regulator 
activity 

9.34e-03 20.8 

TumorVsNor
mal up  

GO:0017116 single-stranded DNA helicase 
activity 

1.34e-02 34.47 

TumorVsNor
mal up  

GO:0005198 structural molecule activity 1.66e-02 5.77 

TumorVsNor
mal up  

GO:0015631 tubulin binding 1.98e-02 7.49 

TumorVsNor
mal up  

GO:0030020 extracellular matrix structural 
constituent conferring tensile 
strength 

3.55e-02 19.73 

TumorVsNor
mal up  

GO:0005046 KDEL sequence binding 4.11e-02 inf 

TumorVsNor
mal up  

GO:0003777 microtubule motor activity 4.26e-02 15.26 

MaleVsFemal
e up  

GO:0141052 histone H3 demethylase activity 7.17e-03 523.5 

MaleVsFemal
e up  

GO:0032452 histone demethylase activity 8.21e-03 487.38 

MaleVsFemal
e up  

GO:0140457 protein demethylase activity 8.21e-03 487.38 

MaleVsFemal
e up  

GO:0032451 demethylase activity 1.44e-02 362.36 

MaleVsFemal
e up  

GO:0016706 2-oxoglutarate-dependent 
dioxygenase activity 

3.21e-02 239.46 
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A.11 Gene Ontology Molecular Functions (GO:MF) for Smoking 

Dataset 

Comparison GO:id Molecular Functions 
Adj. p-
value 

Odds 
ratio 

Age up  GO:0003823 antigen binding 9.97e-14 641.19 
FormerVsNever 
Tumor up  

GO:0008106 alcohol dehydrogenase 
(NADP+) activity 

2.59e-06 3534.25 

FormerVsNever 
Tumor up  

GO:0004033 aldo-keto reductase (NADP) 
activity 

5.94e-06 2617.7 

FormerVsNever 
Tumor up  

GO:0018636 phenanthrene 9,10-
monooxygenase activity 

2.96e-05 35352 

FormerVsNever 
Tumor up  

GO:0047718 indanol dehydrogenase 
activity 

2.96e-05 35352 

FormerVsNever 
Tumor up  

GO:0047115 trans-1,2-dihydrobenzene-
1,2-diol dehydrogenase 
activity 

2.96e-05 35352 

FormerVsNever 
Tumor up  

GO:0047086 ketosteroid monooxygenase 
activity 

9.87e-05 11783.67 

FormerVsNever 
Tumor up  

GO:0047023 androsterone 
dehydrogenase activity 

2.76e-04 5891.58 

FormerVsNever 
Tumor up  

GO:0047044 androstan-3-alpha,17-beta-
diol dehydrogenase activity 

3.55e-04 5049.86 

FormerVsNever 
Tumor up  

GO:0032052 bile acid binding 4.44e-04 4418.56 

FormerVsNever 
Tumor up  

GO:0016616 oxidoreductase activity, 
acting on the CH-OH group 
of donors, NAD or NADP as 
acceptor 

4.96e-04 564.64 

FormerVsNever 
Tumor up  

GO:0016614 oxidoreductase activity, 
acting on CH-OH group of 
donors 

6.22e-04 522.74 

FormerVsNever 
Tumor up  

GO:0004032 alditol:NADP+ 1-
oxidoreductase activity 

6.51e-04 3534.75 

FormerVsNever 
Tumor up  

GO:0004303 estradiol 17-beta-
dehydrogenase [NAD(P)] 
activity 

1.87e-03 1963.53 

FormerVsNever 
Tumor up  

GO:0033764 steroid dehydrogenase 
activity, acting on the CH-
OH group of donors, NAD or 
NADP as acceptor 

5.20e-03 1139.9 

FormerVsNever 
Tumor up  

GO:0016628 oxidoreductase activity, 
acting on the CH-CH group 
of donors, NAD or NADP as 
acceptor 

6.20e-03 1039.28 

FormerVsNever 
Tumor up  

GO:0016229 steroid dehydrogenase 
activity 

6.55e-03 1009.57 

FormerVsNever 
Tumor up  

GO:0016709 oxidoreductase activity, 
acting on paired donors, 
with incorporation or 
reduction of molecular 

6.91e-03 981.51 



 
  221 

oxygen, NAD(P)H as one 
donor, and incorporation of 
one atom of oxygen 

FormerVsNever 
Tumor up  

GO:0016655 oxidoreductase activity, 
acting on NAD(P)H, quinone 
or similar compound as 
acceptor 

1.57e-02 642.27 

FormerVsNever 
Tumor up  

GO:0016627 oxidoreductase activity, 
acting on the CH-CH group 
of donors 

2.10e-02 551.88 

FormerVsNever 
Tumor up  

GO:0033293 monocarboxylic acid binding 3.10e-02 452.74 

FormerVsNever 
Tumor up  

GO:0016651 oxidoreductase activity, 
acting on NAD(P)H 

3.75e-02 410.58 

FormerVsNever 
Tumor up  

GO:0047042 androsterone 
dehydrogenase (B-specific) 
activity 

4.99e-02 inf 

MaleVsFemale 
up  

GO:0141052 histone H3 demethylase 
activity 

7.17e-03 475.9 

MaleVsFemale 
up  

GO:0032452 histone demethylase 
activity 

8.21e-03 443.07 

MaleVsFemale 
up  

GO:0140457 protein demethylase 
activity 

8.21e-03 443.07 

MaleVsFemale 
up  

GO:0032451 demethylase activity 1.44e-02 329.41 

MaleVsFemale 
up  

GO:0016706 2-oxoglutarate-dependent 
dioxygenase activity 

3.21e-02 217.69 

CurrentVsForme
r Normal up  

GO:0016711 flavonoid 3'-
monooxygenase activity 

5.00e-02 inf 

CurrentVsNever 
Normal up  

GO:0016711 flavonoid 3'-
monooxygenase activity 

5.00e-02 inf 

TumorVsNormal 
down  

GO:0005515 protein binding 1.73e-19 5.02 

TumorVsNormal 
down  

GO:0005102 signaling receptor binding 7.31e-19 5.51 

TumorVsNormal 
down  

GO:0005178 integrin binding 7.52e-13 12.48 

TumorVsNormal 
down  

GO:0098772 molecular function regulator 
activity 

3.51e-11 4.43 

TumorVsNormal 
down  

GO:0005509 calcium ion binding 1.40e-10 5.72 

TumorVsNormal 
down  

GO:0140375 immune receptor activity 1.14e-08 10.64 

TumorVsNormal 
down  

GO:0005201 extracellular matrix 
structural constituent 

1.28e-08 9.82 

TumorVsNormal 
down  

GO:0030234 enzyme regulator activity 1.53e-07 4.46 

TumorVsNormal 
down  

GO:0019955 cytokine binding 2.15e-07 9.86 

TumorVsNormal 
down  

GO:0019838 growth factor binding 4.29e-07 10.09 
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TumorVsNormal 
down  

GO:0008092 cytoskeletal protein binding 5.82e-07 4.65 

TumorVsNormal 
down  

GO:0005488 binding 8.37e-07 5.13 

TumorVsNormal 
down  

GO:0003779 actin binding 3.84e-06 5.7 

TumorVsNormal 
down  

GO:0030246 carbohydrate binding 4.33e-06 6.66 

TumorVsNormal 
down  

GO:0050839 cell adhesion molecule 
binding 

8.77e-06 5.2 

TumorVsNormal 
down  

GO:0140678 molecular function inhibitor 
activity 

1.40e-05 5.34 

TumorVsNormal 
down  

GO:0038024 cargo receptor activity 1.68e-05 11.33 

TumorVsNormal 
down  

GO:0038023 signaling receptor activity 2.76e-05 4.04 

TumorVsNormal 
down  

GO:0060089 molecular transducer 
activity 

2.76e-05 4.04 

TumorVsNormal 
down  

GO:0001540 amyloid-beta binding 3.22e-05 11.36 

TumorVsNormal 
down  

GO:0019199 transmembrane receptor 
protein kinase activity 

9.73e-05 11.02 

TumorVsNormal 
down  

GO:0008201 heparin binding 1.30e-04 7.42 

TumorVsNormal 
down  

GO:0005539 glycosaminoglycan binding 1.56e-04 6.42 

TumorVsNormal 
down  

GO:0008289 lipid binding 6.68e-04 4.28 

TumorVsNormal 
down  

GO:0004888 transmembrane signaling 
receptor activity 

8.93e-04 3.93 

TumorVsNormal 
down  

GO:0004857 enzyme inhibitor activity 9.40e-04 5.2 

TumorVsNormal 
down  

GO:0004896 cytokine receptor activity 1.00e-03 8.91 

TumorVsNormal 
down  

GO:1901681 sulfur compound binding 1.38e-03 5.82 

TumorVsNormal 
down  

GO:0140677 molecular function activator 
activity 

1.90e-03 3.96 

TumorVsNormal 
down  

GO:0042277 peptide binding 3.56e-03 5.28 

TumorVsNormal 
down  

GO:0033218 amide binding 3.73e-03 4.97 

TumorVsNormal 
down  

GO:0044877 protein-containing complex 
binding 

4.14e-03 3.64 

TumorVsNormal 
down  

GO:0050840 extracellular matrix binding 7.59e-03 10.64 

TumorVsNormal 
down  

GO:0004955 prostaglandin receptor 
activity 

1.16e-02 47.71 

TumorVsNormal 
down  

GO:0050431 transforming growth factor 
beta binding 

1.22e-02 19.11 

TumorVsNormal 
down  

GO:0030545 signaling receptor regulator 
activity 

1.32e-02 4.38 
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TumorVsNormal 
down  

GO:0005044 scavenger receptor activity 1.81e-02 11.21 

TumorVsNormal 
down  

GO:0004954 prostanoid receptor activity 2.40e-02 38.17 

TumorVsNormal 
down  

GO:0030169 low-density lipoprotein 
particle binding 

3.23e-02 24.75 

TumorVsNormal 
down  

GO:0008047 enzyme activator activity 3.72e-02 4.2 

TumorVsNormal 
down  

GO:0005126 cytokine receptor binding 4.14e-02 5.09 

TumorVsNormal 
down  

GO:0005518 collagen binding 4.43e-02 8.87 

TumorVsNormal 
down  

GO:0071814 protein-lipid complex 
binding 

4.98e-02 15.08 

TumorVsNormal 
down  

GO:0071813 lipoprotein particle binding 4.98e-02 15.08 

TumorVsNormal 
up  

GO:0003823 antigen binding 2.55e-66 84.53 

TumorVsNormal 
up  

GO:0030527 structural constituent of 
chromatin 

4.69e-26 56.59 

TumorVsNormal 
up  

GO:0005198 structural molecule activity 5.06e-11 8.34 

TumorVsNormal 
up  

GO:0046982 protein heterodimerization 
activity 

2.70e-10 12.88 

TumorVsNormal 
up  

GO:0050839 cell adhesion molecule 
binding 

6.97e-08 9.44 

TumorVsNormal 
up  

GO:0008017 microtubule binding 6.10e-05 10.67 

TumorVsNormal 
up  

GO:0046983 protein dimerization activity 6.27e-05 6.43 

TumorVsNormal 
up  

GO:0045296 cadherin binding 5.98e-04 9.1 

TumorVsNormal 
up  

GO:0003777 microtubule motor activity 9.18e-04 20.46 

TumorVsNormal 
up  

GO:0005201 extracellular matrix 
structural constituent 

1.28e-03 12.11 

TumorVsNormal 
up  

GO:0030020 extracellular matrix 
structural constituent 
conferring tensile strength 

1.33e-03 26.44 

TumorVsNormal 
up  

GO:0004222 metalloendopeptidase 
activity 

3.59e-03 14.39 

TumorVsNormal 
up  

GO:0015631 tubulin binding 2.51e-02 7.41 

TumorVsNormal 
up  

GO:0010997 anaphase-promoting 
complex binding 

3.34e-02 84 

TumorVsNormal 
up  

GO:0005488 binding 4.79e-02 8.96 

 




